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ABSTRACT
Error detection is the process of identifying problematic data
cells that are different from their ground truth. Functional
dependencies (FDs) have been widely studied in support of
this process. Oftentimes, it is assumed that FDs are given
by experts. Unfortunately, it is usually hard and expensive
for the experts to define such FDs. In addition, automatic
data profiling over dirty data in order to find correct FDs

is known to be a hard problem. In this paper, we propose
an end-to-end solution to detect FD-detectable errors from
dirty data. The broad intuition is that given a dirty dataset,
it is feasible to automatically find approximate FDs, as well
as data that is possibly erroneous. Arguably, at this point,
only experts can confirm true FDs or true errors. However,
in practice, experts never have enough budget to find all
errors. Hence, our problem is, given a limited budget of
expert’s time, which questions we should ask, either FDs,
cells, or tuples, such that we can find as many data errors as
possible. We present efficient algorithms to interact with the
user. Extensive experiments demonstrate that our proposed
framework is effective in detecting errors from dirty data.

1. INTRODUCTION
High quality data is important for any data intensive ap-

plication. However, data often contains a number of inaccu-
racies and other discrepancies that have significant impact
on decision making. Hence, there has been extensive re-
search [1,12,13,20] on identifying and repairing data errors.
Functional dependencies (FDs) [2] and its extension condi-
tional functional dependencies (CFDs) [14] have been widely
used to detect data errors.

However, in a number of real-world scenarios, a compre-
hensive set of FDs that can detect all errors does not really
exist. Hence, the problem of finding all FD-related errors
of a dirty dataset T is hard. There are three intuitive solu-
tions: (1) Automatically profile T to find FDs [26]; (2) Au-
tomatically profile a clean sample T 1 of T to find FDs; and
(3) Discover approximate FDs on T and then ask the expert
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to manually pick the valid FDs. In this case, the expert is
kept in the loop. Evidently, solution (1) is deemed to fail as
one cannot find FDs from a dirty data T and then use them
to clean T . Solution (2) is likely to fail as well, because in
practice, getting such a sample is expensive and worse, it is
hard – if not impossible – to ensure that the provided sam-
ple is representative. Finally, solution (3) shifts the burden
to the expert, which is also not practical since the number
of approximate FDs can be very large and certainly beyond
the capacity of the expert.

1.1 Problem
An interesting yet practical requirement is: Given a dirty

dataset T , identify a small set of FDs that can detect most
of the FD errors in T . However, we are not provided with a
comprehensive set of FDs and there is no automatic solution
that is able to detect all FD-related errors. Hence, we could
instead try a hybrid approach where an expert is involved to
remove the ambiguity of decisions that an automatic algo-
rithm will face. However, in practice, experts are expensive
and should be used judiciously. More concretely, the prob-
lem we address in this paper is: Given a dirty dataset T
and a budget B of questions to submit to an expert, how to
detect as many FD-related errors as possible?

1.2 Our Methodology
Obviously, detecting data errors using FDs is a chicken and

egg problem as FDs discovered from erroneous data can be
as erroneous as the data themselves. Our approach to solve
this problem consists in smartly leveraging the feedback of
the user with limited involvement. As illustrated in Figure 1,
given a dirty dataset with its corresponding set of discovered
FDs and a fixed budget of questions that can be submitted
to the user, we propose effective algorithms that maximize
the number of errors that are FD-detectable. Overall, our
algorithms rely on two key observations:

(a) We are mostly interested in rules that detect actual er-
rors in the data rather than the myriad of rules that just hold
on the data. That is, we are interested in correct FDs, but
if no error exist on those FDs, then they are not of interest
to us.

(b) There exists a heavy overlap between the errors iden-
tified by various FDs. In other words, the same data error
could be identified by multiple data quality rules [1]. As
the key objective is to detect data errors, it is not neces-
sary to validate all data quality rules that (almost) hold on
the data as they do not contribute much to error detection.
Also, even when considering the subset of FDs that is vio-
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Figure 1: Overview of our approach.

lated by a number of tuples, it is not necessary for the expert
to validate each of them. Instead, it is sufficient to validate
a smaller fraction of the FDs that jointly “cover” the set of
all violations.

We identify three fundamental types of questions that
could be posed to the user: cell-based, tuple-based, and FD-
based questions. For each of these three types of questions,
the set of FDs that can capture the maximal number of er-
rors under a certain budget of queries submitted to the user
is computed.

Cell-based questions. The expert is shown a cell (an at-
tribute and its value) and asked if it is erroneous or not. We
formulate a weighted hitting set-based solution where the
confidence of the FDs that can help in detecting erroneous
cells is computed and recursively updated each time the ex-
pert gives a new label for a cell (true, false, or unknown).

FD-based questions. The expert is shown an FD and
asked if it is a valid FD. We formulate the problem as a clas-
sical combinatorial problem called “budgeted max coverage”
where the objective is to find a small number of sets with
maximum cumulative weight that covers a set of elements
under a fixed budget. In our context, each FD corresponds
to a set where the set of violations it can identify constitutes
its elements. The weight of the set is the cost of soliciting
the user for validating that FD.

Tuple-based questions. The expert is shown an individ-
ual tuple and asked if the tuple has any erroneous cells.
Our algorithms leverage the dual relationship between a set
of FDs and Armstrong relations. We seek to obtain from
the expert, a small set of clean tuples (TS Ă T ) with an
interesting property – the set of exact FDs that hold over
TS have a substantial overlap with the set of FDs discovered
over the clean version of T (say Tclean) and has a minimal
number of false positive FDs (those that hold over TS but not
Tclean). We develop an efficient sampling-based algorithm
for identifying TS .

1.3 Contributions
We summarize our major contributions hereafter:

‚ We study the problem of detecting the set of FD-
detectable errors under a fixed budget (Section 2). We
advocate for a solution strategy that focuses on iden-

tifying the subset of FDs that can detect errors in con-
trast to identifying all the FDs (Section 3).

‚ We consider three fundamental type of questions that
could be asked to the expert (Sections 4, 5 and 6) and
propose algorithms that provide optimal solutions un-
der the budget constraint for each type of questions.

‚ We conduct extensive experiments over multiple real-
world and synthetic datasets that show the efficiency
and efficacy of our solutions (Section 7).

2. PROBLEM FORMULATION

2.1 Preliminaries
Let T represent a database relation with schema R “

tA1, A2, . . . , Amu. Let X Ď R be a subset of attributes.
We represent the projection of T to X as T rXs while the
projection of a tuple t to a set of attributes X as trXs. If X
and Y are two sets of attributes, XY denotes the set XYY .

Functional Dependencies: A functional dependency
(FD) X Ñ Y over a set of attributes X,Y Ď R states that
X functionally determines Y . An FD is satisfied by T if
@t1, t2 P T , if t1rXs “ t2rXs then t1rY s “ t2rY s. X is the
LHS (determinant) of the FD while Y is the RHS (depen-
dent). An FD is violated if there exists at least one pair of
tuples (t1, t2) such that t1rXs “ t2rXs but t1rY s ‰ t2rY s.
Armstrong axioms are a set of sound and complete axioms
covering the implications of FDs. The set of all errors that
can be determined through FDs over T is denoted by EF .
TC is the cleaned version of T after all the errors in EF are
fixed. FT is the set of FDs discovered from the relation T .

Types of FDs: An FD X Ñ A is minimal if no subset
of X determines A, i.e., removing any attribute from X
makes the FD invalid. In this paper, we restrict ourselves to
FDs that are non trivial, i.e., X X Y “ H, and normalized,
i.e., the RHS is a single attribute. By applying Armstrong
axioms, we can demonstrate that any relation that satisfies
an FD X Ñ A1A2 also satisfies X Ñ A1 and X Ñ A2.
Given a set of minimal, non-trivial FDs, we can infer all the
other FDs that hold on T through the Armstrong axioms.
Specifically, we can see that given an FD X Ñ A, any subset
of X makes the FD invalid while a superset of X is a non-
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Figure 2: Attribute Lattice for FD Discovery

minimal FD that can be inferred. Specifically, if X Ñ A
holds then XY Ñ A also holds.

Approximate Functional Dependencies: An approxi-
mate FD (AFD) X Ñ A is a dependency that holds on most
tuples of T and is violated by a small fraction of T . To
better define the concept of approximation, violating tuples
are used to calculate a satisfaction error [23]. In this paper,
we consider the g3 satisfaction error metric that corresponds
to the smallest number of violating tuples that need to be
deleted from the table so that the AFD exactly holds and
has no violations. If the g3 score of an AFD is less than a
given threshold ε, we consider the AFD to be approximately
satisfied. Please refer to [23] for a detailed discussion about
FDs and various algorithms for discovering them.

Representing FDs as a Lattice: The set of all possible
FDs can be modeled as a power set lattice over attributes.
The lattice [23] is a directed graph where each node repre-
sents a unique set of attributes. Nodes at level i contains all
sets of attributes of size exactly i. The root node, level-0,
corresponds to an empty attribute set denoted by H. The
first level has m nodes corresponding to each of the m at-
tributes A1, A2, . . . , Am, and so on. Two nodes in adjacent
levels are connected if their corresponding sets of attributes
are subset or superset of each other. Each edge in the lattice
corresponds to a potential FD. Figure 2 shows an example
of an attribute lattice with three attributes. Given the edge
AB ´ ABC, AB is the parent node of ABC and the this
edge represents one possible FD AB Ñ C.

Combinatorics of Functional Dependencies: Consider
the attribute lattice in Figure 2. We can make the fol-
lowing observations. The i-th level of the lattice consists
of

`

m
i

˘

nodes. The total number of nodes in the lattice is
řm

i“0

`

m
i

˘

“ 2m. Each node has on average m{2 edges. Since
each edge corresponds to a candidate FD, there are 2m

¨m{2
candidate FDs in total. Given an attribute Ai, the num-
ber of candidate FDs with Ai as RHS is 2m´1. This can
be obtained by observing that the power set of the rest of
the m ´ 1 attributes is 2m´1 and for each of the set X in
the powerset, we can construct an FD of the form X Ñ Ai.
Using a similar argument, the number of nodes in the lattice
containing attribute Ai is 2m´1.

Types of Questions: We consider the following three
types of questions to be submitted to the user who will
ultimately validate the correctness of the data or/and the
correctness of the dependencies by providing a “yes”, “no” or
“I don’t know” response. In the case of a “no” answer, the
user does not have to make any correction. To help the user

in the validation, we also provide some context around the
data or the dependencies.

1. Cell-based questions: “Is a particular value (or cell) of
a given tuple’s attribute erroneous?” Possible contexts
are: the complete tuple where the cell appears; FDs for
which the cell causes violations; and a sample of the
tuples causing a violation with the cell in question.

2. Tuple-based questions: “Is a given tuple clean from any
erroneous cell?” The user answers affirmatively if the
tuple does not violate any FD or has correct values in
every cell. Possible contexts include violated FDs and
tuples with which the current tuple causes a violation.
This context can be dynamic depending either on the
cell selection or on the tuple being validated.

3. FD-based questions: “Is a given FD valid?” Possible
contexts include a sample from the sets of violating
and non-violating tuples.

Cost Model for Questions: An effective cost function for
answering a question should quantify the effort provided by
the user. Different types of questions might impose different
costs in terms of user’s effort. In fact, even within a single
question type, different questions might have different costs.
For example, the cost of a question for validating an FD

with 2 attributes on the LHS and the one for validating an
FD with 10 attributes on the LHS are different. Designing
an appropriate cost function for expert interaction requires a
more systematic and domain-dependent user study, which is
beyond the scope of the paper. We assume that all of our al-
gorithms can accept a black-box cost function and structure
the expert interaction accordingly. Specifically, we assume
that we are provided with a cost function that returns a
cost associated to each question submitted to the user. In
addition, the black-box function must satisfy some natural
constraints – such as the cost being deterministic and posi-
tive (i.e., non zero).

Utility of Question Types: The three types of questions
have diverse trade-offs between the user’s effort and the in-
formation that can be leveraged by our algorithms. Consider
the cell-based question for which a pair (or set) of tuples with
one highlighted cell are shown to the user. If the appropriate
contextual information is given, this question type is often
the simplest one to answer. However, the amount of infor-
mation it reveals is not substantial. If the expert validates a
violation, our confidence in the FD that could have identified
this violation increases. However, it is possible that none of
such FDs are useful FDs, i.e., valid and relevant both for the
domain expert and for error detection. Tuple-based ques-
tions are the most expensive case in practice (according to
our cost function), especially if the table has a large number
of attributes. However, the information they provide when
the tuple is validated is substantial. Note that a relation
with a single tuple can represent all possible 2m

¨m{2 candi-
date FDs. As more tuples are added to this relation, it can
concisely represent the (possibly exponential) set of satisfied
FDs. Ideally, it might be possible to identify a small subset
TS Ă T such that the set of FDs that hold over TS is very
close to those that hold over T . The FD-based question falls
in between these two extremes. A single FD can concisely
represent a large number of data errors as violations. Often,
it is also possible that the user could readily answer whether
a minimal FD over some key attributes is valid.



2.2 Problem Statement
In this paper, we address the problem of discovering FD-

detectable errors with limited user involvement and we for-
mulate it as follows. Given a fixed budget in terms of the
number of questions that can be asked to a user, we want to
maximize the number of erroneous cells that can be identi-
fied through FDs while minimizing false positives.

More formally, given a dirty table T with EF , the set of
errors that can be identified by FDs (EF Ď Eall with Eall,
the set of all erroneous cells), a class of question types Q, a
cost function C : q P Q Ñ R, and a budget B that limits
the number of questions that the user can afford, the bud-
geted FD error detection problem aims at selecting a set of
questions of type Q with cumulative cost of at most B that
maximizes the number of detected violations from EF while
minimizing the number of false positives.

3. FD-DETECTABLE ERRORS WITH
BUDGETED USER FEEDBACK

We begin by providing a high level overview of our work-
flow and a meta-algorithm that will be instantiated by the
latter sections. Next, we provide a formulation of our prob-
lem in graph theoretic terms that highlights its inherent
combinatorial challenges.

3.1 Overall Workflow
Let T be a dirty table and TC be its corresponding “clean”

version. Let ΣTC be the set of FDs that hold on TC . If we
issue ΣTC over T , we can identify the set of FD-detectable
errors over T , ET . Unfortunately, neither TC nor ΣTC is
available to us and hence there is no fully automatic way to
identify ΣTC .

We begin by identifying a set of candidate FDs through
the following simple observation. Without loss of generality,
consider a minimal FD ϕ : AÑ C that holds on TC . There
are two scenarios: (a) ϕ either holds on T or (b) a special-
ization of it (say AB Ñ C) holds on T . Any other scenario
is not feasible. Hence, if we discover the set of FDs that hold
on T , each FD in this set must either be an FD in TC or a
specialization of it. Our process for generating the set of
candidate FDs is as follows: (a) we run exact FD discovery
over T to obtain ΣT (b) for each σ P ΣT , we relax it by sys-
tematically removing one attribute at a time from its LHS
till it is violated by more than a fixed threshold (say 10% of
the tuples). We can see that each of the relaxed FDs do not
violate more than 10% of the tuples. Let the set of relaxed
FDs be Σcand. With an appropriate threshold, we can ensure
that all FDs in ΣTC are contained in Σcand. On the flip side,
there might be a number of FDs in Σcand that are not in
ΣTC . We dub the later as false positive FDs as they identify
some violations that are not true. Our objective now is to
interact with the expert in an effective manner so that we
obtain a smaller subset Σ1 Ď Σcand such that it has a high
overlap with ΣTC (i.e., true FDs) and a low set difference
(i.e., false FDs). Algorithm 1 provides the pseudocode for
this process.

3.2 Bipartite Graph-based Interpretation
We now have three sets of FDs: ΣTC and ΣT , that hold

on TC , T , respectively, and Σcand, the relaxed FDs from ΣT .
Let the set of violations detected by the ΣTC and Σcand on
T be ETC and Ecand. As ΣTC Ď Σcand, we have ETC Ď

Algorithm 1 Meta Algorithm

1: Get the set of candidate FDs and identify the set of can-
didate violations

2: while budget has not been exhausted do
3: Identify the next question that provides maximum in-

formation
4: Update the set of candidate FDs and candidate viola-

tions
5: return candidate FDs

Ecand. Under a bounded budget, our objective is to ask
a series of selected questions so that the number of true
violations detected is maximized and the number of false
positive detections is minimized.

Consider a bipartite graph where nodes in the left par-
tition correspond to FDs in Σcand and nodes in the right
partition correspond to violations in Ecand. An edge con-
nects an FD-node ϕ to a violation node v if the ϕ can detect
v. Our objective is to determine a small number of FD nodes
that maximize the number of violation nodes in ETC while
minimizing those in EcandzETC . We can also notice that the
FD-based questions ask experts based on the RHS of the
bipartite graph while cell-based questions ask on nodes on
the LHS of the graph.

One of the advantages of the bipartite graph formulation is
that it immediately highlights the computational challenges
of our problem. Specifically, we can see that even a simplified
version of the problem is NP-Complete. Given a set of FDs

ΣTC and the corresponding violations on T namely ETC , the
minimum FD-error cover problem asks if there is a set of
at most k FDs Σ1 Ď ΣTC with |Σ1| ď k that can detect
all violations in ETC . This is equivalent to the set cover
problem where, given a universe U of items and a set S “
tS1, S2, . . . , Smu with each Si Ď U , the objective is to obtain
a set S 1 Ď S with |S 1| “ k such that their union is U . This
problem is known to be NP-Complete [16].

4. INSTANCE-BASED QUESTIONS
In this section, we consider the cell-based questions where

the user is shown a single cell, i.e., the value of a specific
attribute Ai of a tuple t (i.e., trAis), and asked if it is erro-
neous. The user is also shown some additional context such
as one or more candidate FDs that the cell violates along
with other tuples with the same value as the LHS of the FD

but with values different from the RHS of trAis. The user
answers in the affirmative if the cell violates one or more
FDs and negatively otherwise. The expert can answer “I
don’t know” if she is not sure of the response. We point to
some interesting connections between our problem and the
well-studied problems of weighted hitting set and truth dis-
covery and we propose two interactive algorithms for asking
effective cell-based questions.

Informativeness of cell-based questions: Compared
with FD and tuple based questions, Cell-based questions
often provide the least amount of information. Cell-based
questions are often the easiest to answer – so easy that it
can even be answered by non-expert users and could be effec-
tively “crowdsourced” to the typical consumers of the data.
In addition to this appealing property, there does exist sce-
narios where cell-based questions may provide substantial
information. For example, consider a cell that is labeled as



Algorithm 2 Cell-Q-Hitting-Set

1: Σ, EΣ be set of candidate FDs and violations respectively

2: @f P Σ, wpfq “ 0

3: @v P EΣ, wpvq “
ř

fPΣpvq wpfq

|Σpvq|

4: while budget B has not been exhausted do
5: v Ð arg minvPEΣ

wpvq
|Σpvq|

6: Validate v with the user
7: if v is a true violation then
8: @f P Σpvq, wpfq “ wpfq ` δ
9: Recompute the weight of affected violations

10: else if v is not a violation then
11: Σ “ ΣzΣpvq and update EΣ

12: EΣ “ EΣztvu
13: return Σ

erroneous by multiple candidate FDs. If the expert certi-
fies it as erroneous, the information provided is small and
our confidence in each of those FDs increases. On the other
hand, if the expert certifies that the cell is not erroneous, the
provided information is substantial. We can now categorize
all those FDs as invalid instead of the much more expensive
alternative of validating each and every FD with the expert
(through FD-based questions).

An algorithm for selecting an effective set of cell-based
questions must balance the two conflicting objectives. On
the one hand, a violation identified by multiple candidate
FDs is more likely to be a true violation as only one of those
candidate FDs must be true for the violation to be true. On
the other hand, the validation by the expert can provide a
substantial payoff by single-handedly removing many false
positive FDs. The two algorithms that we propose next seek
to achieve such a balance.

4.1 Hitting Set-based Approach
(Weighted) Hitting set is a classical problem in complexity

theory [16]. The input consists of a U , the finite “universe”
of elements and S which is a set of subsets of U . Each
element in U has also a weight. The minimum weighted
hitting set problem seeks to identify U 1 Ď U such that the
intersection between U 1 and each set in S is non-empty and
the cumulative weight of elements in U 1 is minimized. It
has been shown that a simple greedy algorithm provides an
approximation ratio of logp|U |q. The algorithm iteratively:
(a) picks the element e that minimizes the ratio of e’s weight
to the number of sets in S containing e, and (b) removes all
the sets containing e from S.

Example 1: [Hitting Set] Let U “ t1, 2, 3, 4, 5u and
S “ tt1, 2, 3u, t1, 3, 5u, t2, 5uu. Let the weights be wp1q “
1, wp2q “ 1, wp3q “ 1, wp4q “ 1, and wp5q “ 2. Both t1, 2u
and t1, 5u are hitting sets but t1, 2u is the optimal answer
because its weight is 2 vs. 3 for the latter. l

Our Approach: Our problem of selecting a small set of
violations can be reformulated as a hitting set problem as
follows. The set of all violations corresponds to the universal
set U . The set of candidate FDs corresponds to S with the i-
th set Si being the set of violations identified by the i-th FD.
By formulating it as a hitting set problem, we can identify
a small set of violations that can potentially invalidate all
the FDs in the best case. Realistically however, the expert

Algorithm 3 Cell-Q-SUMS

1: Σ, EΣ be set of candidate FDs and violations respectively

2: CΣ, CE be confidence of Σ, EΣ

3: @f P Σ, c1pfq “ 1
4: @v P EΣ, c1pvq “ 1
5: Update CΣ, CE using Estimate-Confidence
6: while budget B has not been exhausted do
7: Pick violation v that provides maximum information
8: Ask the expert
9: Update CΣ, CE using Estimate-Confidence

can mark a violation as a true violation or as a false one.
If a violation vi is marked as true, then we must increase
our confidence in the FDs that identified vi and must avoid
asking another vj that is also identified by the same set of
FDs. This can be achieved by assigning weights to each
violation.

Our algorithm operates as follows. We initialize the
weight of all candidate FDs to 1 (the minimum confidence)
and the weight of all violations to the average of the weights
of the FDs that identify it. Hence, the weight of each viola-
tion is also initialized to 1. We now pick the violation that
minimizes the ratio of its weight to the number of FDs that
identify it and ask the expert. If it is not a violation, we
remove all FDs that identified it. Otherwise, we increase the
confidence of each FD that identified it by a small parameter
δ (say 0.1). The weight of each violation is then recomputed.
These two steps are repeated till the budget is exhausted.
Algorithm 2 provides the pseudo-code.

4.2 Truth Discovery-based Approach
While the hitting set-based algorithm works adequately in

practice, its performance is hampered by the fact that it is
not leveraging the recursive relation between confidence over
candidate FDs and candidate violations. Specifically, we are
more confident about a violation if it was detected by one or
more FDs with high confidence. Conversely, our confidence
over an FD rests on the fact that it identifies violations that
we are confident about.

This recursive definition is closely related to the area of
“truth discovery” (See [4] for a survey). Informally, in truth
discovery, we are provided with a set of sources and a set of
claims. Each source makes a set of claims and each individ-
ual claim could be made by a subset of sources. When dif-
ferent sources provide conflicting information about a claim,
the objective of truth discovery is to identify the factual true
claim. Note that a recursive definition naturally applies here
- we are confident about the trustworthiness of a source that
makes claims that we believe in while our belief over a claim
is increased if it is made by many (possibly independent)
trustworthy sources.

We adapt the SUMS algorithm from [28] for our FD-
detectable error discovery problem. At a high level, our al-
gorithm starts with a default confidence over both FDs and
violations. We then recursively recompute the confidence
over an FD as the sum of confidence of the violations and
vice-versa. This process is repeated till the values converge.
Algorithm 3 provides the pseudo-code.

Note that we use different formulas for computing the con-
fidence of an FD and a violation. The confidence of a vio-
lation is simply the sum of the confidence of the FDs that



Algorithm 4 Subroutine Estimate-Confidence

1: Input: Σ, EΣ be set of candidate FDs and violations
respectively

2: Initialize CΣ, and CE , the confidence values of the candi-
date FDs and violations

3: while values have not converged do

4: @f P Σ, cipfq “ log |Ef |

ř

vPEf
ci´1pvq

|Ef |

5: Normalize the confidence values for FDs

6: @v P EΣ, cipvq “
ř

finΣpvq c
i´1
pfq

7: Normalize the confidence values for FDs

8: i “ i` 1
9: return CΣ, CE

identify it. However, we cannot use the equivalent defini-
tion for estimating the confidence of an FD due to a subtle
issue. Consider a candidate AFD f that has a large number
of violations (say up to 10%). It is likely that f is a false
positive FD. However, f would routinely get high confidence
in each iteration under the summation formula due to the
large number of violations it identifies. By computing the
average, we penalize FDs that may identify too many vio-
lations (unless most of them are also high confidence ones).
On the other hand, the logarithmic factor balances the confi-
dence by providing a boost to FDs that cause a large number
of violations. Specifically, given two FDs with each having
the same confidence but one identifying 10 violations but the
other 100 violations, we prefer the latter by providing higher
weight (log |Ef |). After each iteration, normalization of the
confidence must be made so as to limit them to a range of 0
and 1. The simplest way for the normalization would be to
divide each confidence value of an FD (resp. violation) with
the maximum value of confidence value of the FD (resp. vi-
olation) in a given iteration. Once the budget is exhausted,
we pick all the FDs that have a confidence value higher than
a expert specified threshold (e.g. 95%). We treat these FDs

as true FDs and use them to detect the violations in T .

5. FD-BASED QUESTIONS
We now consider the scenario where the expert is asked

schema based questions in the form of FDs. Specifically, the
expert is shown a (possibly non-minimal) FD and asked if it
is a valid FD. The expert answers in the affirmative if the
FD is valid and the violations that it determines are indeed
errors. The expert answers in the negative if the FD is invalid
and the violations it identifies are not errors. The expert
can always respond as “I don’t know” if she is not sure either
way. We relate the problem of choosing a small set of FDs to
validate with the expert that maximizes the detection of true
violations to the classical problem of “budgeted maximum
coverage” [21]. We propose an interactive algorithm that
identifies the FD to be asked to the expert that provides the
maximum information at each iteration.

Informativeness of FD-based questions: Note that FD-
based questions are more informative than the cell-based
ones. Informally, this is due to the fact that a valid FD can
single handedly represent/identify many violations. Hence,
we obtain the same amount of information by validating a
single FD as against validating each and every one of its
violations. However, this increased informativeness comes
at a cost. While the cell based-question can be answered

by general users, it often requires an expert to answer an
FD-based question.

Desiderata for FD-based questions: Given a set of can-
didate FDs (that might be FDs or AFDs), choosing the right
set of FDs to ask is challenging for two main reasons. First,
as minimal FDs have a straightforward interpretation in the
context of the application/business logic, one might think
that asking minimal FDs is the best approach to follow.
However, asking non-minimal FDs or those that are implied
by other FDs might still have substantial benefits. For ex-
ample, consider two FDs ϕ1 : A Ñ C and ϕ2 : B Ñ C.
Instead of asking the expert to validate two FDs, the ex-
pert could be asked to validate a single (implied) FD of the
form ϕ3 : AB Ñ C. Typically, the violations identified by
ϕ3 are the union of those identified by ϕ1 and ϕ2. Second,
it is not trivial to determine which of the candidate FDs

with bounded violations to validate with the expert. On
one hand, one can think of validating candidate FDs with
a small number of violations, i.e., those where removing a
small number of tuples makes them exact FDs. However,
these do not provide much bang for the buck as the number
of violations detected with expert interaction is small. On
the other hand, validating a candidate AFD with a large
number of violations is also not very helpful as it might be
a false positive FD.

We would like to note that these and many other issues can
be elegantly abstracted by using the following two functions:
(a) a cost assignment function that takes an FD and returns
the cost of asking the FD to the expert and (b) a ranking
function that given two FDs with the same cost, ranks an
FD that provides more information higher.

Our algorithm can accept any arbitrary cost assignment
function that returns non-negative values for a candidate
FD. Our ranking function is based on three factors: (a) suc-
cinctness that rewards FDs that are concise and have smaller
number of attributes on the LHS. (b) preferentially reward
FDs that are more likely to be accurate and hence less likely
to be false positive and (c) given two similar FDs, rewards
the FD that cover a larger number of violations to one that
identifies lesser number of violations. This is due to the fact
that our budget is limited and we would prefer to minimize
the number of FDs validated with the expert.

Budgeted maximum coverage-based formulation: In
the budgeted maximum coverage problem, we are given a
universe of elements U and a set of sets S “ tS1, S2, . . . , Sku

with each of Si Ď U . We are also given a cost function
cp¨q : S Ñ R and a weight function wp¨q : U Ñ R. In other
words, each set has a cost and each element has a weight.
The objective then is to choose a subset S 1 Ď S such that
the total weight of the elements in S 1 is maximized while the
total cost of S 1 is minimized. [21] shows that a variant of a
greedy algorithm that picks the set maximizing the weight of
uncovered elements has an approximation ratio of 1

2
¨1´1{e.

The translation between the two problems is straightfor-
ward. Note that in our problem, we are given a set of can-
didate approximate FDs ΣT and their corresponding viola-
tions. U is the set of all violations while S is the set of all
AFDs. Each AFD ϕ P S is represented as a set containing
all the violations it identifies. The cost of ϕ is given by the
cost assignment function. We initially set the weight of vio-
lation v P U to 1 and generalize it to arbitrary values later.
Now, our objective is finding a small set of questions to ask



Algorithm 5 FD-Q-Budgeted-Max-Coverage

1: Σ1 “ H
2: while budget B has not been exhausted do

3: Selected AFD ϕ P Σ that maximizes w1pϕq
costpϕq

4: Validate ϕ with expert
5: if ϕ is valid then
6: Remove all violations identified by ϕ
7: Σ “ Σ zϕ, Σ1 “ Σ1 Y ϕ
8: return Σ1

the expert such that their cumulative cost is within a budget
and they maximize the number of detected violations.

Note that the approximation algorithm in [21] is for the
non-interactive scenario where the objective is to pick a set
of elements. In our case, this process is interactive where
we need to validate the chosen FDs with the expert. Algo-
rithm 5 provides the pseudo-code for the adapted algorithm.

6. TUPLE-BASED QUESTIONS
We now consider the tuple-based questions where the user

is shown a tuple and asked if it is erroneous. The user an-
swers in the affirmative if the tuple does not contain any
erroneous cells and in the negative otherwise. We iden-
tify some interesting connections to the theoretical notion of
Armstrong relations and use it develop efficient algorithms.

Tuple-based questions are particularly effective whenever
it is possible for the user to answer such questions for the
following key reasons: (1) there might be scenarios when
the user can be relatively confident about the cleanliness of
a tuple, e.g., the tuple might come from a reliable source
and might be considered clean for all practical purposes;
and (2) tuple-based questions provide substantial amount
of information than either cell-based or FD-based questions.
Similarly to FD-based questions that can concisely encode
more violations than the cell-based questions, a small set of
tuples can encode a large number of FDs that in turn encode
an even larger number of violations.

Representing FDs using tuples: Informally, we can con-
sider a relation R to represent both the set Σ of FDs that
hold over it and the set Σ̂ of FDs that do not hold. A
relation R can represent an FD explicitly or implicitly. R
explicitly represents a valid FD ϕ P Σ (say X Ñ A), when
there exist two tuples ti, tj P R such that tirXs “ tjrXs and
tirAs “ tjrAs. Similarly, R explicitly represents an invalid
FD ϕ1 R Σ (Y Ñ B) when there exists a pair of tuples that
serve as a counter example to ϕ1 with tirY s “ tjrY s and
tirBs ‰ tjrBs. This formulation can be made more precise
through the notion of the Armstrong relation.

Armstrong relation: Let Σ be the set of FDs and Σ˚ be
the set of FDs that can be logically inferred from Σ through
Armstrong axioms. A database relation RA is an Armstrong
relation for a set of FDs Σ iff RA satisfies all FDs in Σ˚ and
no other FD.

The dual relationship between a set of FDs and a set of
tuples drives the development of our algorithm. Note that
we cannot directly leverage the idea of Armstrong relations
as we neither have the set of “true” FDs nor a clean dataset
to discover them from. Hence, we have to settle for an ap-
proximation. Our new objective then is to come up with a
small set TS of tuples that are certified clean by the user

Algorithm 6 Tuple-Sampling-Uniform

1: TS “ H

2: while budget has not been exhausted do
3: Randomly sample tuple t
4: if expert certified t as clean then
5: Add t to TS

6: Discover FDs ΣTS that hold on TS .
7: return ΣTS

such that the set of FDs it represents overlaps substantially
with the correct FDs.

The scourge of false positive FDs: A key challenge that
our approach must overcome is minimizing the number of
false positive FDs. Recall that T is the dirty table given
to us and TC is the corresponding (hypothetical) cleaned
version of it. Let ΣR be the set of FDs that hold over a
relation R. For example, ΣTC is the set of FDs that hold over
TC . Consider a relation TS Ă T initially populated with a
single tuple ti P T . We can see that it implicitly represents
each one of the 2m

¨m{2 candidate FDs (see Section 2) that
hold in TS . The set of FDs that hold on TS but not on TC

(i.e., ΣTC zΣTS ) are false positive FDs as the violations they
detect are not true violations. Now, let us consider what
happens if we add another tuple tj P T to TS . The updated
ΣTS is (probably substantially) smaller than 2m

¨m{2 as tj
might act as a counter example to many of the candidate
FDs. In effect, the number of false positive FDs drops when
we added tj to TS . If we are not careful, ΣTS might contain
many false positive FDs that in turn snowball into a large
number of false violations. Hence, a good algorithm must
identify the best set of tuples (under budget) that minimizes
the number of false positive FDs.

Basic Approaches: We start by describing two simple ap-
proaches to construct the relation TS . The first approach,
we dub as Tuple-Sampling-Uniform, works as follows. It
chooses a tuple t uniformly at random from T and validates
it with the expert. If the tuple is clean, it is added to TS and
rejected otherwise. This process is repeated till the query
budget is exhausted. Despite its simplicity, this algorithms
works reasonably well in practice and it is not hard to see
why. Let p be the probability of finding a clean tuple from
T (or equivalently the fraction of clean tuples in T ) and the
cleanliness of the chosen tuples can be modeled through a
binomial distribution. As an illustration, if p is 0.9 and we
get 100 tuples, then we would expect 90p100 ˆ 0.9q out of
them to be clean with a variance of 9 (100ˆ 0.9ˆ 0.1). The
flip side of this approach is that a small fraction (specifically
1 ´ p) of our budget is spent on dirty tuples. Algorithm 6
shows the pseudocode.

An improved approach, Tuple-Sampling-Violation-

Weighting works as follows. Given T , we discover approxi-
mate FDs that hold on at least a fraction p of T . For each
tuple t, we compute the number of AFDs for which t is part
of the minimal number of tuples to be deleted to make the
AFD to an FD. We can now perform a weighted sampling
where the probability of a tuple being picked is inversely
proportional to the number of violations. It is easy to see
that this approach reduces the number of dirty data shown
to the expert. Algorithm 7 shows the pseudocode.



Algorithm 7 Tuple-Sampling-Violation-Weighting

1: TS “ H

2: Discover FDs ΣT from T
3: Relax ΣT to obtain a set of candidate FDs, Σcand

4: Compute the set of candidate violations, Ecand

5: @t P T , wptq “ |Σcand| - number of FDs in Σcand it
violates

6: Normalize the weights wptq for all tuples: wptq “
wptq

ř

t1PT wpt1q

7: while budget has not been exhausted do
8: Let t be the tuple chosen by weighted sampling
9: if expert certified t as clean then

10: Add t to TS

11: Discover FDs ΣTS that hold on TS .
12: return ΣTS

FD Closures and Saturation Sets: Before we describe
an improved approach, we need to define two key terms.
Given a set Σ of FDs and a set of attributes X Ď R, the clo-
sure of X denoted as X˚, is the set of attributes (including
X) that are directly or indirectly dependent on X. A set of
attributes X is said to be saturated [6] iff X˚ “ X.

Example 2: [Saturation Sets.] Using an example from [6],
if Σ “ tB Ñ C,AC Ñ Bu, then the saturated sets are tAu,
tCu, tB,Cu, and H. l

Sampling with Saturation Sets: Tuple-Sampling-

Violation-Weighting suffers from a glaring deficiency.
While it minimizes the number of dirty tuples to be vali-
dated by the expert, it does not contribute much to the re-
duction of false positive FDs. In other words, it might easily
add some tuple ti to TS that does not serve as a counter ex-
ample to one or more false positive FDs. Our next algorithm
Tuple-Sampling-Saturation-Sets addresses this issue. It
works based on the observation that was proved in [6]. If
RA is an Armstrong relation for a set of FDs Σ, then for
every saturated set of attributes, it has at least two tuples
ti, tj such that they agree on all the attributes for the sat-
urated set and disagree on others. For example, given a
relation with three attributes A, B, and C and a saturated
set tB,Cu, it means that the Armstrong relation must con-
tain two tuples that have the same values for B and C but
differ on A.

Algorithm 8 provides the pseudo-code. Informally, we
start by discovering the FDs for T and compute the satu-
rated sets S. Then we randomly sample a tuple t weighted
inversely based on its number of violations (of AFDs). If the
tuple t satisfies some saturated set(s), we request the expert
to validate it. If it is certified clean, we add t to TS and
remove the satisfied sets from S. This process is repeated
till the budget is exhausted.

7. EXPERIMENTS

7.1 Experimental Setup
Hardware and Platform: All our experiments were per-
formed on a quad-core 2.2 GHz machine with 16 GB of
RAM. The algorithms were implemented in Python. We
used Metanome [25] data profiling tool for discovery of func-
tional dependencies.

Algorithm 8 Tuple-Sampling-Saturation-Sets

1: Discover FDs ΣT from T
2: S = saturated sets of FT

3: TS “ H

4: while budget has not been exhausted do
5: Randomly sample tuple t
6: if t satisfies some saturated set in S then
7: If certified clean, add t to TS and remove saturated

sets satisfied by t from S
8: Discover FDs ΣTS that hold on TS .
9: return ΣTS

Datasets: We conducted our experiments over one syn-
thetic and two real-world datasets. We use the Tax gen-
erator from [7] for generating our synthetic dataset. It
consists of 100K tuples corresponding to taxpayer informa-
tion such as name, gender, address, salary along with tax
rates and exemptions. The second dataset Hospital con-
sists of health-care provider information from USA Medicare
scheme and has around 115K tuples. It has attributes such
as provider/hospital name, addresses, and type of services
provided. The third dataset is SP stock that was obtained
by [10] with almost 123K tuples. It provides information
about the historical performance of S&P 500 stocks. Each
tuple contains information about a stock such as the date,
ticker name, starting and closing price along with high, low
prices and the volume of trade. The numbers of exact FDs

on these datasets are 364, 83 and 56 respectively.

Error Generation: We used BART [3], a state-of-the-art
system for benchmarking data-cleaning algorithms. Given
a set of data quality rules, it provides highly customized
mechanisms to introduce errors into clean databases. Given
a dataset and a set of FDs that hold on them, we generated
two types of dirty datasets. We start by setting the maxi-
mum number of tuples violating any FD to the default value
20%. As an example, a dataset with 100K tuples and 10 FDs

would have 20K tuples that violate them. In the uniform er-
ror model, we apportion the violations to each FD uniformly.
In the sample scenario, each FD will be violated, on average,
by 2K tuples. In the systematic error model, the distribution
of errors that were identified by the FDs are skewed with a
small set of FDs identifying most of the errors. In the ran-
dom error model, BART can generate random errors such
as typos, duplicate values, and missing values. In our ex-
periments, we generated for each clean dataset, 10 different
dirty dataset counterparts that are detectable by FDs. Our
experimental results are computed as the average of 10 runs
over these dirty datasets. Unless specified, our experiments
use the systematic error model that is more representative
of real-world errors.

Algorithms: We tested 4 algorithms described in our pa-
per: CellQ-HS (Algorithm 2) and CellQ-SUMS (Algorithm 3)
for cell-based questions, FDQ-BMC (Algorithm 5) for FD-
based questions, and Sampling-Violation (Algorithm 8)
for tuple-based questions. We compared them against in-
tuitive baselines for each case. Algorithm CellQ-Greedy

greedily chooses cells that are violated by a large num-
ber of candidate FDs. This heuristic often works well in
practice due to the fact that if the cell is indeed a true
violation, it increases our confidence over a large num-
ber of candidate FDs. On the other hand, if the cell is



not a valid violation, then it can potentially eliminate a
large number of FDs from consideration. Algorithm FD-Q-

Greedy also works similarly by greedily picking FDs that
can identify the largest number of violations with an anal-
ogous reasoning. For tuple-based questions, we consider
algorithms Tuple-Sampling-Uniform and Tuple-Sampling-

Violation-Weighting described in Section 6 as baselines.
For each of the three types of questions, we also con-

sider hypothetical oracle-based baselines that are aware of
the true FDs and the corresponding FD errors. Thus, these
baselines can pick the optimal choice at each step as to what
question to ask the expert. These baselines show that, for
a fixed budget, our proposed algorithms achieve a true and
false positive rate that is very close to the optimal algo-
rithms. Given a budget, FDQ-Oracle seeks to identify the
set of FDs that maximize the number of true FD errors. Sim-
ilarly, CellQ-Oracle seeks to identify the minimum number
of cell-based questions that maximizes the number of true
FDs and minimizes the number of false positive FDs. Fi-
nally, algorithm TupleQ-Oracle seeks to identify the mini-
mum number of tuples to validate with the expert so as to
achieve a fixed false positive rate (recall that tuple-based
questions always have 100% true positive rate).

Cost Model: Recall that our algorithms can work with
any arbitrary black box cost function. For the purpose of
our experiments, we use the following intuitive cost model.
The cost of validating a single cell is 1 while the cost of
validating a tuple is m (the number of attributes). The
cost of asking an FD based question is αk

ˆ |LHS| where
|LHS| is the size of FD’s determinant. Since all the FDs we
are interested in are normalized, the RHS is always a single
attribute. Given a (possibly non minimal) FD σ1 and the
corresponding minimal FD σ, k is the difference between the
number of attributes on the LHS of σ and σ1 respectively. α
is a weighting factor that penalizes asking large non minimal
FD questions. For example, given a minimal FD σ : AÑ D
and α “ 2, the cost of asking σ1 : A Ñ D, σ2 : AB Ñ D
and σ3 : ABC Ñ D are 1, 4 and 12 respectively.

Workflow Simulation: We simulated the interaction with
the user as follows. For each of the “clean” version of the
dataset, we computed the set of true FDs ΣTC that hold
over it. Given a cell-based question of the form trAis for
some tuple t and attribute Ai, we verify if it violates any FD

from ΣTC . If so, we respond that the cell is erroneous and
as clean otherwise. Given a tuple, we respond as erroneous
if it violates some FD in ΣTC and clean otherwise. Given
an FD σ1, we answer as affirmative if the FD is a minimal
FD σ or a specialization of one. For example, given a true
minimal FD of the form A Ñ C, we answer in affirmative
for candidate FDs AÑ C and AB Ñ C. We do not assume
that the user is aware of the principles of FD inference such
as Armstrong axioms.

Performance Measures: For all algorithms, we measure
their efficacy through two factors: (a) the number of true
violations identified and (b) the cost imposed on the expert
based on the different types of questions asked. In addition,
we are also interested in secondary metrics such as false pos-
itive and false negative detections. A detection is said to be
false positive if it does not violate any “true” FDs while it is
said to be false negative if it violates some “true”FD but our
algorithm determines it not to be a violation. For example,

a false negative can occur if the budget has been exhausted
before the corresponding FD could be validated by the user.

7.2 Experimental Results

7.2.1 Cell-based Questions
We first consider the cell-based questions where the user

validates a set of cells that are then used to compute the
confidence of the FDs that detected them. The user then
treats all FDs with a confidence above a certain threshold
(say 90%) as true FDs.

Figures 3(a)-3(c) shows the results for how the fraction of
detected true violations varies with the budget. We see that,
in contrast to a greedy algorithm, our algorithms quickly
identify most of the true violations for a small budget. In
fact, we observe that our algorithms can find a higher num-
ber of true violations while the greedy algorithm cannot.
However, this detection comes with a cost. Our cell-based
approach can produce too many false positive violations.
Figure 3(d) shows that cell-based questions require a large
number of queries before the number of false positives drops
to acceptable values. Not surprisingly, the SUMS algorithm,
which is based on truth discovery, performs best when the
budget is limited. Furthermore, our algorithms achieve a
true detection rate that is very close to the oracle-based
baseline even for a limited budget.

7.2.2 FD-based Questions
We next consider the FD-based questions. Recall that ev-

ery violation identified by our FD-based question algorithms
is a true violation as the corresponding FD was validated by
the expert. To evaluate the effectiveness of our algorithms,
we varied the budget and studied how it impacts the fraction
of true violations that were detected.

Figures 4(a)-4(c) show the results for two datasets under
systematic errors. Overall, we observe that, in each of the
scenarios, our algorithm detects more violations for a fixed
budget. Figure 4(a) shows that our algorithms quickly de-
tect 100% of the true violations with a small budget. This
is due to the fact that, in a systematic error model, some
FDs identify most of the violations and our algorithm pref-
erentially validates them first. Figure 4(b) shows the be-
havior for uniform errors where each FD is violated by a
similar number of tuples. As expected, our algorithm incurs
a higher cost as each of the FD needs to be validated in the
worst case. However, our algorithm still outperforms the
baseline because of two reasons: (a) it is budget-aware and
hence detects more errors for a fixed budget and (b) it can
ask the user to validate non-minimal FDs, which reduces the
cost in some scenarios. The cost for validating Tax dataset
is higher as it has more FDs (more than 300 compared to less
than 100 for other datasets). Figure 4(c) shows the results
for random errors. The number of detected violations is far
smaller as most of the random errors (such as typos) are
not detectable by FDs. Nevertheless, our algorithms iden-
tify the FD-detectable errors with limited budget. Finally,
in contrast to cell-based algorithms, Figure 4(d) shows how
the false negatives reduce dramatically when increasing the
budget. Recall that in a systematic error model, few FDs

could detect most of the errors. Our algorithms validates
those FDs in early interactions with the expert. The rest
of the FDs detect smaller and smaller number of errors re-
sulting in a smaller detection utility with increasing budget.
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Figure 3: Performance of our algorithm for Cell-based Questions over Hospital Dataset (Legend for Fig-
ures 3(b)-3(d) are same as that of Figure 3(a))
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Figure 4: Performance of our algorithm for FD-based Questions for Hospital and Tax datasets (Legend for
Figures 4(b)-4(d) are same as that of Figure 4(a))

Once again, the set of FDs that are chosen to be verified
with the expert are very similar for both the oracle-based
baseline and our algorithms.

7.2.3 Tuple-Based Questions
We now consider the tuple-based questions. Figure 5(a)

shows how the detection of true violations is affected by the
budget. We observe that all tuple-based algorithms always
detect 100% of the true violations. The reason is simple:
given a subset TS of clean tuples, the list of FDs that hold
over TS also holds over TC , the clean version of the table.
Hence, every violation in the table is always detected by the
FDs. However, this appealing property comes with a flip side
that is highlighted by Figure 5(b). These algorithms suffer
from a large false positive detection rate. In particular, our
algorithm suffers due to the challenges inherent in obtaining
a small set of representative samples so as to have a perfect
true violation detection but low false positive violations.

7.2.4 Comparative Performance of Algorithms
In this set of experiments, we evaluate how the FD-, cell-,

and tuple-based questions compare against each other for a
fixed budget. Figures 6(a)-6(b) shows the result. We ob-
serve that there is no single question type that serves as the
silver bullet as each of them have their pros and cons. FD-
based questions have the attractive property that they do
not have any false positives, but might detect only a frac-
tion of true violations for a small budget. On the other
hand, tuple-based questions detect 100% of the true viola-
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Figure 5: Performance of our algorithm for Tuple-
based Questions over Hospital Dataset with System-
atic errors (Legend for Figure 5(b) is same as that
of Figure 5(a))

tions but suffer from a large false positive violation detection
rate. The cell-based questions falls in the middle with bet-
ter performance on false positive than tuple-based questions
with worse performance on true violation detection.

7.2.5 Impact of Error Percentage
We proceed with an evaluation on how the fraction of tu-

ples that are erroneous affect our algorithms. Here, we vary
the number of erroneous tuples from 10% to 50%. How-
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Figure 6: Comparative performance of our algo-
rithms over Hospital Dataset with Systematic er-
rors (Legend for Figure 6(b) is same as that of Fig-
ure 6(a))

ever, each FD is still violated by at most 10% tuples. We
evaluated all our algorithms for a fixed budget of 500.

Figure 7 report the results for detection of true violations.
Tuple-based questions still detect 100% of all true violations.
For a budget of 500, the impact on FD-based questions is
minimal as the performance of FD-based algorithms are not
dependent on the number of violations for each FDs. The
impact on cell-based questions is also minimal as long as
the proportion of violations between different FDs is fixed.
Figure 8 reports the result for false detections. The increas-
ing number of violations has an impact on the rate of false
positive violation detections. This is due to the fact that
tuple-based algorithms have to expend a substantial budget
for finding each “clean” tuple. The false positive detections
increases for cell based questions with increasing error per-
centage. This is due to the fact that the large number of cell
violations make it harder to separate true FDs from false FDs

which results in increased false positive violations. There is
no impact on FD based questions as they do not lead to any
false positive detections.

7.2.6 Impact of User Answers
The reader might now have the following question in mind:

What happens if the user cannot answer every question de-
cisively? We answer this question in this experiment. We
simulated this scenario by making expert decline to answer
a fixed fraction of questions as “I don’t know” (IDK). We
varied the rate from 50% to 100%.

Figure 9 shows the result. Note that the impact on tuple-
based questions is substantial: the algorithm keeps asking
the expert to validate tuples till she answers affirmatively.
However, it has a deleterious effect on FD- and cell-based
questions. For example, consider a set of errors that is iden-
tified by a single (minimal) FD. If the user answered “I don’t
know”, the algorithm has to issue other non-minimal FDs

while paying the penalty for asking such non-minimal FDs.
The impact on cell-based is relatively minimal as each FD is
often violated by a large number of cells and the algorithm
can highlight other cells to determine if an FD is valid.

7.2.7 Runtime Performance
We would like to highlight that our focus is on detecting

FD errors under a small budget. Most of the computation-
ally expensive steps of our algorithms such as finding exact

FDs over a dirty dataset and relaxing them to find approx-
imate FDs with bounded violations can be considered as a
preprocessing step. Hence, the key performance measure is
the time taken from the moment the user answers a question
to the moment the next question is asked.

Figure 10 shows the runtime performance of our algo-
rithms per user interaction for the synthetic Tax dataset
where we varied the number of tuples. As expected, the
impact of tuple-based algorithms is minimal as the key step
involves verifying if the chosen tuple satisfies any saturation
set that is independent of the number of tuples. Similarly,
the impact on FD- and cell-based questions is minimal or
at most linear. Note that the time complexity of both the
algorithms depends on the number of violations and not on
the number of tuples or FDs.

7.2.8 Comparative Analysis of Algorithms
Let us summarize the relative strengths and weaknesses

of all three approaches based on a number of dimensions.

1. Expert Effort: Cell based questions are often the
easiest for an expert to answer. Validating the entire
tuple might be more tiresome, especially if the relation
has many attributes. FD validation falls in between.

2. Fraction of True Violations Detected: Under the
perfect oracle model where the expert response is al-
ways correct, tuple based questions often have a 100%
true violation detection rate. FD based questions have
the next best performance, especially under the real-
world scenario where few FDs can identify most of the
errors. Cell based questions perform the worst as they
require a substantially large number of validations to
cover most (if not all) of the true violations.

3. False Positive Detection: Tuple based questions
suffer from the worst false positive detection rate due
to the inherent challenge in obtaining a small set of
representative samples (i.e., Armstrong relations) that
have low false positive violations. Cell based questions
also suffer from the false positive rate, albeit at a lower
level. As the number of validations increase, there is
a proportional decrease in the number of false positive
violations. FD based questions do not suffer from false
positives since each validated FD always detects true
violations.

4. Runtime Performance: Tuple based questions are
often the most efficient as the bottleneck involves veri-
fying if a chosen tuple satisfies any saturation set. This
is often independent of the number of tuples. The cell
and FD based questions often require a running time
proportional to the number of violations (both false
positive and true positive). In a typical dataset, this
number might be prohibitively large.

5. Impact of Expert Responding as ‘I Don’t
Know’: Given a fixed budget, the impact on tuple
based questions is the highest. This is due to the fact
that the rate of false positives is disproportionately
high when the set of validated tuples are small. The
impact on cell and FD based questions is relatively
minimal as each FD is often violated by a large num-
ber of cells and the algorithm can highlight other cells
to determine if an FD is valid.
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8. RELATED WORK
Discovering Integrity Constraints. Many ICs have
been proposed to capture different types of data errors that
violate these ICs. In practice, in many applications, these
ICs are provided by domain experts through expensive eye-
balling exercise. Different from them, our proposal finds all
FD-detectable errors without having to determine explicitly
all the true ICs first, which actually alleviates the experts’
workload for finding relevant ICs for data error detection.
There are various algorithms to automatically discover ICs.
Many of them assume that there exists a clean yet repre-
sentative sample of data, so the main issue is generally to
improve the efficiency [18, 22, 27]. However, finding a set
of clean yet representative ICs is generally hard. Moreover,
there are algorithms to find approximate ICs when assuming
that the data is not clean, such as discovering FDs [8, 19],
CFDs [15], MDs [29], and DCs [11]. Unfortunately, as dis-
cussed earlier, a very large number of approximate ICs might
exist when we assume that the dataset is dirty, and approx-
imate IC discovery algorithms are very sensitive to dirty
data. Consequently, asking the user to select the relevant
ones from a large number of candidate ICs is often unfeasi-
ble in practice.

Different from these approaches, we neither assume that
we have a clean sample data, nor ask the users to validate all
approximate ICs. Our approach is to fill the gap between
the large space of potentially useful approximate ICs and
the limited validation capacity of the user. Also, we do not
target at finding all relevant ICs. Instead, our focus is to
find all FD-detectable errors, as some ICs are not helpful if
there is no data violating them.

Evolving Data and Integrity Constraints. There are
several proposals to deal with cases where, as data and busi-
ness rules evolve, some of the ICs may no longer be valid
while new ones need to be added. The authors of [9] pro-
pose a unified cost model for data and constraint repairs
over a database that quantifies the trade-off of when an in-
consistency requires a data repair compared to a constraint
repair. The authors of [5] propose the notion of relative
trust: data and FDs are not always equally trustworthy.
Hence, they propose an algorithm for generating different
suggestions to modify the data or the FDs in a minimal and
non-redundant way. A user will then consult the suggested
data or FD repairs and decide on the best way to resolve
violations. In [24], the author focus on a narrower prob-

lem of modifying violated FDs by adding attributes to the
antecedent of the dependency such that they are valid again.

In contrast, our approach faces a different situation where
only data is given, and the user only wants to find all de-
tectable errors, instead of valid ICs. From one hand, in our
scenario, neither the data nor the ICs will evolve. From the
other hand, the assumption that good ICs are given does
not hold in our setting.

User Interaction for Data Cleaning. There are also sev-
eral work that interacts with users for data cleaning. Guided
data repair (GDR) [30] suggests possible repairs to the user
who ultimately decides the right repair, which is in turn
used to train a machine learning module. Falcon [17] in-
teracts with the user to confirm SQL update queries from
sample updates. The above approaches mainly aim to lever-
age the user’s feedback in data repairing. We differ in that
we take a step back to only detect data errors. A practical
way to bridge our approach with other heuristic data repair-
ing methods is to bootstrap the end-to-end data cleaning
pipeline with our proposed approach to discover FDs, and
then use them as input for other repairing algorithms to do
the actual data repairing.

9. CONCLUSIONS AND FUTURE WORK
We have proposed a new framework for detecting data er-

rors violating functional dependencies where the FDs are not
explicitly provided by the experts. The goal was to solicit
expert feedback up to a certain budget while maximizing the
number of detected violations and minimizing the number
of false positives. To achieve this goal, we have presented
efficient algorithms to interact with the user on three types
of questions, namely cell-based, tuple-based, and FD-based,
and highlighted the relation to well studied problems in com-
binatorial optimization. We have demonstrated by extensive
experiments that our solution can effectively and efficiently
identify data errors by minimizing user involvement.

There are many promising directions for future work. One
challenging direction is to extend our work to other ICs be-
yond FDs, such as those in the more general category of
denial constraints. Another direction is to enhance the ro-
bustness of our algorithms where the expert may provide
incorrect answers for a fixed fraction of questions. Go-
ing beyond error detection, solving the interactive budgeted
data repair problem without the availability of FDs is an
open problem and is also part of our future work.
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[18] A. Heise, J. Quiané-Ruiz, Z. Abedjan, A. Jentzsch,
and F. Naumann. Scalable discovery of unique column
combinations. PVLDB, 7(4), 2013.

[19] Y. Huhtala, J. Kärkkäinen, P. Porkka, and
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