
Approximate Single-Linkage
Clustering Using Graph-based Indexes:

MST-based Approaches and Incremental Searchers

Camilla Birch Okkels1 ,
Erik Thordsen3 , Martin Aumüller1 , Arthur Zimek2 , and Erich Schubert3

1 IT University of Copenhagen, Denmark
{cabi, maau}@itu.dk

2 University of Southern Denmark, Denmark
zimek@imada.sdu.dk

3 TU Dortmund, Germany
{erik.thordsen, erich.schubert}@tu-dortmund.de

Abstract. Current exact single-linkage clustering algorithms have asymp-
totically quadratic complexity. We present algorithms for approximate
single-linkage clustering with empirically near-linear scalability. We ex-
plore both graph index-based incremental nearest neighbor search and
an iterative exploration scheme on the graph index approximating the
MST of the reachability graph similar to Kruskal. As graph index, we use
both the bottom layer and a combination of all layers of an HNSW as a
stand-in for connected search graphs. We provide experiments comparing
the clusterings to baselines such as exact single linkage implementation and
an algorithm using metric tree-based searchers. We explore the impact of
the HNSW hyperparameters on the performance in terms of running time
and clustering quality and evaluate the empirical asymptotic complexity.

Keywords: Clustering · Hierarchical Clustering · Approximate Clustering.

1 Introduction

Clustering is one of the fundamental data mining tasks aiming at identifying groups
in data. What makes good groups depends on the adopted clustering paradigm.
Some methods aim at finding compact clusters (typically assuming a given number
of clusters), others aim at finding groups of connected points, where the connectivity
is a transitive property, allowing for non-compact, arbitrarily shaped clusters. The
first group is often named “partitioning”, the second “density-based”. Particular
examples are k-means for a partitioning-based method, and DBSCAN [4] for a
density-based method. While these two categories both result in a set of “flat”
clusters, a third category finds hierarchies of clusters, where the clusters could fall
in the “partitioning” or in the “density-based” category, and larger clusters can
contain smaller clusters (and those in turn even smaller clusters), allowing to mine
complex concept hierarchies or studying a dataset at different levels of granularity.

https://orcid.org/0009-0005-1904-4024
https://orcid.org/0000-0003-1639-3534
https://orcid.org/0000-0002-7212-6476
https://orcid.org/0000-0001-7713-4208
https://orcid.org/0000-0001-9143-4880

2 Okkels, Thordsen, Aumüller, Zimek, and Schubert

Traditionally, clustering algorithms need to determine distances between points
in a metric space, often in the form of neighborhood searches from a given point.
In big datasets containing high-dimensional vectors, these operations are often the
limiting factor in terms of efficiency and, hence, applicability. Indexing methods,
which organize the data points in a way that support neighboring searches, can be
employed to facilitate efficient search where needed in the clustering routine [8,16].
However, for challenging datasets, in particular high-dimensional ones, traditional
indexing methods would often degenerate and the runtime of the algorithm would
become more expensive than a linear scan [23]. While there is little hope [2] for exact
similarity search with “better-than-linear” worst case performance, researchers
have made significant progress on using approximate, “inexact” techniques to speed
up neighborhood searches. In particular, the graph-based approach HNSW [10] led
to a paradigm shift from tree- or hashing-based approaches towards graph-based
approaches, see for example the recent survey by Azizi et al. [3].

In the context of clustering, some work has been done to adapt or enhance
“flat” clustering methods for handling large datasets efficiently using approximate
neighbors [5,11,14,24]. On the other hand, hierarchical clustering has been more
often sped up with other techniques (e.g., parallelization) [22,13,6]. Notable ex-
ceptions for a concrete linkage criterion are the hashing-based methods that were
described by Koga et al. [7] (for a single-linkage heuristic) and Abboud et al. [1] for
Ward’s linkage. The main conceptual challenge of efficient, hierarchical clustering
is that all points have to be merged into a single cluster eventually. However,
this means that in the beginning close neighbors have to be merged together,
while at the end almost unrelated points are the ones that lead to a cluster being
merged. Approximate neighbor search methods—if used as a surrogate for the
exact indexing methods—can only help with the first step.

In this paper we explore the use of HNSW [10] in a whitebox manner (cf. the
discussion of blackbox vs. whitebox use of approximate nearest neighbor methods
albeit for outlier detection by Okkels et al. [12]). This means that we operate directly
on the approximate neighborhood graphderived byHNSWtoderive an approximate
hierarchical clustering structure, which is a new direction in approximate hierar-
chical clustering. The main challenge remains how to use the information present
in the graph. We consider three different approaches: one uses the HNSW graph to
generate candidate pairs for an incremental searcher as described by Schubert [15],
while the other two build a hierarchical clustering directly on top of the graph.

Our contributions can be summarized as follows:

– We initiate the study of graph-based hierarchical clustering and explore the
design space of such algorithms. In particular, we propose three hierarchical
clustering algorithms based on single-linkage clustering. As a byproduct we
propose a novel method for incremental searching a graph-based index.

– We carry out an empirical evaluation of the proposed methods, identifying
suitable hyperparameter settings and showing their competitiveness against
state-of-the-art baselines.

– We identify advantages and disadvantages of using approximate, graph-based
hierarchical clustering methods.

Approximate Single-Linkage Clustering Using Graph-based Indexes 3

In the following, we discuss technical background and closely related methods
(Section 2), propose our methods of hierarchical clustering with HNSW (Section 3),
evaluate the method (Section 4), and conclude our findings (Section 5).

2 Background and Related Work

Let (X ,d) be a point space equipped with a distance measure d : X×X →R+, for
example d-dimensional Euclidean space with X :=Rd with d(a,b) :=∥a−b∥2. Given
a dataset S⊆X of N points, the goal of hierarchical clustering is to publish a rooted
binary tree that has n leaves which represent the n data points. The children in the
subtree rooted at an inner node belong to the same clustering, thus introducing
a hierarchy of clusterings. The selection of which nodes to merge is known as the
linkage criterion. Traditionally, the tree representation is called a dendrogram.

2.1 Hierarchical Single Link

Hierarchical Agglomerative Clustering is probably the oldest clustering method,
whose origins can be traced back to numerical taxonomy in the 1950s [18]. Several
variants and algorithms of this method exist, and the basic textbook version can
be explained as treating each point as a separate cluster initially, then always
merging the two closest clusters. Depending on how we measure the distance of
clusters, we can obtain very different behavior. In this work, we will focus on
single-linkage clustering, where the distance of two clusters CA and CB is defined
as mina∈CA,b∈CB

d(a,b): intuitively, the distance is defined by the single shortest
edge between the two clusters.

Single-linkage clustering is effectively equivalent to finding the minimum span-
ning tree (MST) in the complete graph (S,E,w) induced by the dataset S, where w
represents the distance between a pair of points. The early method SLINK [17] runs
in quadratic time and linear memory, and closely resembles Prim’s algorithm for the
minimum spanning tree. Another classic algorithm for MST is Kruskal’s algorithm
[9]. In classic Kruskal, all edges are inserted into a heap, ordered by increasing edge
length; then we repeatedly poll the next shortest edge and merge these clusters with
a union-find data structure. The complexity of the algorithm is O(E logE) where
E is the number of edges. For a fully connected graph, this hence is O(N2 logN).

2.2 Hierarchical Clustering using Incremental Neighbor Search

For hierarchical clustering with incremental similarity search, Schubert [15] intro-
duced multiple algorithm variants. For this work, we focus solely on single-linkage
clustering, and specifically on the Heap-of-Searchers Single-Link (HSSL) algorithm.
While Schubert [15] used a vantage point tree (VP-tree) for exact search, we will
investigate approximate clustering with the HNSW graph. For the algorithms, we
build on the HNSW graph framework created and explored by Thordsen et al. [20].

Similar to Kruskal’s algorithm discussed above, the idea of this algorithm is
to try to enumerate all edges in increasing length. Instead of using one large heap,

4 Okkels, Thordsen, Aumüller, Zimek, and Schubert

HSSL uses a heap of incremental searchers. For each point we create a searcher
to enumerate its neighbors. After finding the first nearest neighbor, the searcher
is inserted into the heap with this distance as key. We then pull from the heap
the current nearest neighbor, and insert the edge into a union-find data structure,
advance the searcher to the next nearest neighbor and insert it back into the heap.
The efficiency of this approach depends very much on how much work we can
avoid in incremental nearest neighbor search. A searcher could be implemented
by computing all distances to the query point and putting them into a heap, but
this clearly would yield an O(N2 logN) run-time. Specifically, it is desirable to
skip computing distances where (A) the points are already in the same cluster due
to earlier cluster merges, or (B) the distances are larger than the longest edge of
the minimum spanning tree. A tree-based similarity search structure such as the
VP-tree used by Schubert [15] can help here, as lower bounds to subsets of the data
help in postponing distance computations to these sets until we find no shorter
edges. Furthermore, we may be able to skip computing distances of points that
are already in the same cluster due to earlier merges.

2.3 Hierarchical Navigable Small World Graphs

Hierarchical Navigable Small World (HNSW) [10] is a graph-based indexing struc-
ture for approximate nearest neighbor search. Given a datasetS⊆X and parameters
M,efC , a hierarchical graph G=(V,E) is built. On each layer of the graph, a point
is represented by a vertex with edges to a diverse set of nearest neighbors. The
parameter M determines the maximum number of neighbors per node, and efC
limits the width of the beam search during construction, see ef below. The graph
structure is constructed hierarchically by adding points probabilistically to the
layers with higher layers having lower probability of points appearing.

A search in this graph is carried out in the following way: starting at a node
in the top layer, the graph is traversed in a greedy fashion, moving to neighbors
that are closer to the query point. When no neighbors are found to be closer to the
query, the search moves to the next layer down. This is repeated until the search
terminates on the bottom layer and the nearest points found can be returned.
Instead of making progress only for a single point, the queue of potential points
is restricted to ef points, known as the width of the beam. HNSW builds the graph
incrementally by inserting each point at a time. Inserting a point into the graph
works by searching for the point to be inserted using the standard search algorithm,
and choosing a diverse set of neighbors based on the nodes explored by the search,
which is known as the neighborhood selection rule.

3 Single-Link Clustering with HNSW

In the following we discuss three approaches to perform single-linkage clustering
using the HNSW graph. All approaches will start by constructing an HNSW-
based index for a given set of hyperparameters. The running time of finding the
hierarchical clustering is thus the sum of index building time and running the

Approximate Single-Linkage Clustering Using Graph-based Indexes 5

Algorithm 1: HNSW-Kruskal(S, M, efC , minPts)

1 G←HNSW(S,M,efC) // instantiate an HNSW-graph
2 H←Min heap containing all edges from G with distance as weight
3 G0← bottom layer of G
/* Iterate over MST edges of reachability graph in ascending order */

4 while not all points are in the same cluster do
5 dij , (i,j)←H.pop()
6 if i and j are in the same cluster then continue
7 Add edge i, j, dij to the Dendrogram.
8 foreach neighbor k of j in G0 do
9 if i and k are in different clusters then H.push(d(si,sk),(i,k))

10 foreach neighbor k of i in G0 do
11 if j and k are in different clusters then H.push(d(sj ,sk),(j,k))

12 return Dendrogram of merge information

clustering approach on the given index. In the following, we will assume that the
graph is built. Note that the HNSW graph is not necessarily connected, although the
“long edges” in the upper layers help. These exist because the set of near points on
higher levels represent a small sample of the dataset; close neighbors are very likely
to be actually far away. If the graph is not connected, we can enforce connectivity
by sampling one point from each component and computing their distances. From
a clustering perspective, we do want these components to be separated, and hence
finding a suboptimal long edge does not negatively affect the clustering result.

3.1 The baseline: Minimum Spanning Tree on HNSW

As baseline approach, we simply compute the minimum spanning tree (MST) of
all the edges in the HNSW graph. Given that we limit the number of neighbors
of each point in this graph to be at most a small constant M=O(1), it is easy to
see that the we have O(N) edges. Given the HNSW index, finding the MST takes
time O(N logN) and represents a single-linkage-based, approximate clustering. We
stress that the MST of the HNSW graph is not the MST of the complete graph
induced by the dataset as discussed in Section 2.2.

3.2 Kruskal-style Hierarchical Clustering

To improve over the baseline, Algorithm 1 describes how to heuristically simulate
running Kruskal’s algorithm on the complete graph induced by the dataset. To
run Kruskal’s algorithm, we would need access to all O(N2) edges sorted by their
distance but we want to avoid materializing all edges. We approach it like this: Ini-
tially, we begin with only the edges of the bottom layer of the HNSW graph, which
only stores O(N) edges, as in the baseline approach. To improve the clustering
quality, when we poll an edge (a,b) from the graph, we insert new edges with one
additional step in the HNSW graph: let Na and Nb be the neighbors of a and b,

6 Okkels, Thordsen, Aumüller, Zimek, and Schubert

Algorithm 2: HNSW-HSSL(S,M ,efC ,efS ,UnionFind)
1 S←{}, H←{} // searchers and primary heap
2 G←HNSW(S,M,efC) // instantiate an HNSW-graph
3 foreach p∈S do
4 searcher← HNSWSearcher(p, G, UnionFind, efS) // See Algorithm 3
5 S[p]← searcher
6 H.push(searcher.peek(), p)

7 while not everything merged do
8 dpq, p← H.pop()
9 dpq, q← S[p].advance()

10 if not UnionFind.connected(p,q) then
11 UnionFind.merge(p,q)
12 Dendrogram.append((p,q,dpq))

13 H.push(S[p].peek(), p)

14 return Dendrogram

then we add edges ∀nb∈Nb
(a,nb) and ∀na∈Na

(na,b) to the graph if (1) these points
are not yet connected, (2) the edge has not previously been added to the heap.

The running time of the algorithm is clearly not as straight-forward to discuss
as the baseline algorithm. While initially there are only O(N) edges, we might carry
out the while loop without making any progress for pairs of points which are close to
each other but have already been merged. Thus it will be interesting to evaluate the
difference in running time and quality between the baseline and this Kruskal-style
variant. The implementation of the algorithm comes with subtle challenges. Because
of cliques in the graph, adding edges to all neighbors of the other point can easily
cause a lot of duplicate edges to be added. Hence we need to keep track of which
edges we have already explored. But in the worst case, we may haveO(N2) edges and
a simple hash set of all edges may already need a lot of memory. We can reduce this
memory overhead by almost a factor of two if we use an array of hash sets where the
smaller node id is the array index, and the larger node id is stored in the set. When
running out of memory, it may be possible to add a cleanup step where all edges
are removed from these maps that are connected in the union-find data structure.

3.3 Incremental Heap of Searchers using HNSW

Our final proposal is to implement the incremental searcher architecture HSSL that
was considered by Schubert [15] with HNSW. Algorithm 2 presents the overview of
the incremental search approach, which can be viewed as a vertex-centered version
of Kruskal’s algorithm. At the start, we initialize an incremental searcher for each
point in the dataset. In rounds, we take the smallest edge that is present in any of
the N searchers and add it to the clustering (if the edge does not connect two points
which are already clustered together). Our novel contribution is the design of an
approximate incremental searcher data structure for HNSW, which might be of
independent interest. Our pseudocode of the incremental searcher uses the Python

Approximate Single-Linkage Clustering Using Graph-based Indexes 7

Algorithm 3: HNSWSearcher(q,G,uf,ef)
Input: q – data point; G – HNSW graph; uf – UnionFind-data structure;
ef – number of candidates to keep
Output: Generator of candidate neighbors

1 E←MinPrioQueue() // expand queue
2 C←MinPrioQueue() // candidate queue
3 V ←{} // visited set
4 E.push(0,q) // starting vertex
/* generator function to find neighbors in approx. ascending order */

5 while E is not empty do
6 (d,x)←E.pop()
7 N←G.get_neighbors(x)
8 foreach p∈N do
9 if not uf .connected(q,p) and p /∈V then

10 dxp←d(x,p) // compute distance to candidate
11 C.push(dxp,p) // add to candidate queue
12 E.push(dxp,p) // add to expansion queue
13 V.add(p) // prevent duplicates in queue

14 while |C|>ef do
15 yield C.pop() // return candidate and suspend

16 while C not empty do
17 yield C.pop() // return remaining candidates

generator pattern and is presented as Algorithm 3. When next() is called on this
generator, it runs until the next call to yield, then execution is suspended. The
main idea is to keep a buffer C of at least ef candidate neighbors, similar to a beam
search for kNN in graph indexes, and a priority queue E of vertices to expand next.
In contrast to a kNN search, we cannot truncate these sets. While we have less than
ef candidates, we pop the next vertex from the expansion queue E, and for any
neighbor we check that (1) we have not visited it already, (2) it is not yet connected
in our union-find structure. We then compute the exact distance and enqueue it
both in the candidate queue C and the expansion queue E. If we have at least ef
candidates, the current best candidate is returned and removed from the heap.

From the three proposed methods, the HSSL variant uses HNSW’s search
method almost in a black-box method and should thus—given “good hyperparam-
eter” values—accurately represent the neighborhood of a data point. However, it
should also be the slowest method since it will by design enumerate close neighbors
before far away neighbors, which might become a bottleneck in the final process
of merging (far away) clusters.

4 Evaluation

Implementation Details and Experimental Setup. Experiments were run on a
machine with 2x14 core Intel Xeon E5-2690v4 (2.60 GHz) with 512GB RAM using

8 Okkels, Thordsen, Aumüller, Zimek, and Schubert

Table 1: Overview over Datasets.
Dataset Min. sample size Max. sample size dim. (d)
ALOI 50 000 110 000 63
MNIST 10 000 70 000 784

Ubuntu 20.04.6 LTS. The implementation was split into a backend HNSW imple-
mentation using the Rust programming language that exposes Python bindings.
These Python bindings are used in the experimental pipeline. The incremental
searcher (Algorithm 3) are implemented in Rust, but the merging logic in Algo-
rithm 2 uses a pure Python solution. The part of the implementation in rust is from
the framework by Thordsen et al. [20]. The core implementation and the bench-
marking framework can be found at https://github.com/CamillaOkkels/HSSL and
https://github.com/CamillaOkkels/singleLinkage-benchmark respectively.

Datasets. Table 1 summarizes the datasets that we have used to carry out the
evaluation. We focus our study on real-world data using the ALOI and MNIST
datasets, which have been used in cluster analysis before [11]. To measure scalability
of the proposed implementations, we subsample the datasets, always ensuring that
a smaller dataset is fully contained in a larger sample.

Evaluation criteria. As a performance measurement, we measure the overall time
it took to compute the hierarchical clustering. To measure the quality of the
clustering, we compare the produced approximate clustering to an exact baseline
clustering. Given two dendrograms, we first measure the cophenetic distances [19]
for each dendogram, which measure the minimum height of the dendrogram needed
to connect two points. Our quality measure is the Pearson correlation between
these distance matrices, which we call Cophenetic correlation. Since the distance
matrix contains O(N2) entries, we compute the correlation on a subsample of 107
pairs. Experiments using traditional metrics such as the adjusted Rand index (ARI)
require an additional step to cut the dendrogram into partitions that introduces
noticeable instability, while also offering only a limited capability to differentiate
results as distances are not used by this measure.

Baselines. We compare our implementations against the industry-standard single-
linkage implementation in the SciPy library [21]. As a direct competitor based on
incremental searching, we use the VPTree-based implementation by Schubert [15].

Hyperparameter settings. All three implementation used max_build_heap_size
(efC) and lowest_max_degree (M) for the HNSW graph construction. The HNSW-
HSSL method further took an additional parameter ef (efS). We let efS take values
{5,11,22,47,100}, we let efC take values {25,42,71,119,200} and we let M take
values: {14,26,51,100}. All the values were chosen to span a large interval, and
to be evenly spaced in log-space. Testing of M for smaller values suggested that a
minimum value of around 14 ensured the HNSW graph would be connected - with
very few exceptions due to their random nature.

https://github.com/CamillaOkkels/HSSL
https://github.com/CamillaOkkels/singleLinkage-benchmark

Approximate Single-Linkage Clustering Using Graph-based Indexes 9

14 26 51 100

0.6

0.8

1

Graph max degree

C
op

he
ne

ti
c

C
or

re
la

ti
on HSSL Kruskal expansion MST

14 26 51 100

0.8

0.9

1

Graph max degree

C
op

he
ne

ti
c

C
or

re
la

ti
on HSSL Kruskal expansion MST

Fig. 1: Cophenetic correlation on ALOI (top) and MNIST (bottom).

Key findings. We summarize our key findings as follows and will detail them in
the following subsections.

1. There is a clear difference between the three proposed methods in terms of
running time and achieved quality. The MST baseline is fastest but sensitive
to hyperparameter choices, whereas the HSSL variant achieves the best quality
with robust parameter selection. The difference in speed between MST and
HSSL can be up to a factor 100x.

2. The additional work done in the Kruskal variant (Algorithm 1) does not yield
big improvements in clustering quality over the MST baseline.

3. Both Kruskal and HSSL do not exhibit worst-case quadratic scaling on the
tested datasets.

4. All three variants outperform the industry-standard SciPy baseline.

4.1 Internal Evaluation

Accuracy. Figure 1 shows a bar plot comparing the accuracy of the differentmethods
for varying values of M . Each thick horizontal line in a bar represents the quality
achieved for a certain set of parameters (for Kruskal and MST, a single efC, for HSSL
a pair (efC, efS)). For each variant, a cophenetic correlation of at least .8 can be
achieved by a careful selection of hyperparameters. In general, it is more difficult for
our variants to achieve good quality on ALOI, compared to the MNIST dataset. We

10 Okkels, Thordsen, Aumüller, Zimek, and Schubert

observe that the accuracy of HSSL increases with increasing M on both ALOI and
MNIST. For both datasets and M choices, it outperforms the other two approaches
regarding the best achievable clustering quality. The Kruskal and MST methods had
increasing quality with increasing M for MNIST, but for ALOI we observed a slight
decrease, until a slight increase again between M=51 and M=100. Interestingly,
the baseline MST approach shows comparable performance, even outperfoming
Kruskal for some parameter choices. However, in particular on the ALOI dataset,
the MST-based approach is more sensitive to hyperparameter choices.

Running time. Figure 2 plots the performance of the individual methods in relation
to the achieved clustering quality. Due to space constraints, we focus the discussion
on the MNIST dataset and plot only the Pareto frontier of the measurements. The
results that we measured on ALOI were similar.

We observe that for HNSW-HSSL, a larger M value allows for more accurate
clustering quality. However, even the smallest value resulted in a clustering quality
above .9 while leading to an efficient clustering algorithm. Getting from a clustering
quality of .9 to close to 1 increases the running time by almost a factor of 10.
The search parameter efS has little influence on the clustering quality and good
results are achievable with the minimum setting of 5. This is helpful in terms of the
robustness of the algorithm, since HNSW-HSSL comes with an additional search
parameter that is missing in the other two variants.

For the other two variants, we again observe the trend that increasing M im-
proved quality at the cost of slower run times on MNIST. The max_build_heap_size
(efC) parameter lead to smaller variations in the clustering quality at the expense
of running time.

Comparing all three plots, we notice major differences in running time. A clus-
tering quality of at least .9 can be achieved in around 2 seconds (MST), 12 seconds
(Kruskal), and 100 seconds (HSSL).

While Figure 2 visualizes the Pareto frontier and gives interesting observations
over the hyperparameter choices, Figure 3 provides a scatter plot over all possible
hyperparameter choices and relates measured running time to clustering quality.
The plot reinforces the observations that each variant provides a very distinct
performance tradeoff, i.e., the slowest parameter settings for MST are faster than
the fastest for Kruskal, and similarily between Kruskal and HSSL. Quality-wise we
observe that HSSL provides better quality for most of the hyperparameter choices.
In particular the MST algorithm requires careful hyperparameter selection. For
example, for ALOI there exist hyperparameters that require more time and provide
poorer quality.

4.2 Comparison to other baselines

We now turn our focus to evaluate the three proposed methods against SciPy’s
single linkage clustering algorithm, and the VPTree incremental searcher by Schu-
bert [15]. For these experiments, we subsample the datasets to carry out a scalability
analysis. For each sample size, we use the same parameter choices for the individual

Approximate Single-Linkage Clustering Using Graph-based Indexes 11

Fig. 2: Pareto frontier of optimal cophenetic correlation scores on MNIST for
HNSW-HSSL (top), HNSW-Kruskal (middle), HNSW-MST (bottom).

method. For all three methods the parameters are chosen as the fastest settings
above a 0.8 cophenetic correlation.

Figure 4 relates our three proposed methods to the competitors. To put the run-
ning times into context, we empirically fit regression lines to the observed running
times. These running times are visible in the label of each method in the legend.
Comparing to the industry-standard from SciPy, all of the proposed methods are

12 Okkels, Thordsen, Aumüller, Zimek, and Schubert

100 101 102 103

0.6

0.8

1

Run time [log s]

C
op

he
ne

ti
c

co
rr

el
at

io
n HSSL Kruskal MST

100 101 102 103

0.8

0.9

1

Run time [log s]

C
op

he
ne

ti
c

co
rr

el
at

io
n HSSL Kruskal MST

Fig. 3: Run time vs. approximation quality on ALOI (top) and MNIST (bottom)

faster. The difference is more pronounced for the MNIST dataset than for the
ALOI dataset. Comparing the two implementations based on incremental searchers
(HNSWHSSL and VPTree), we notice an interesting tradeoff in their performance:
while the (exact) VPTree is faster on ALOI, it is slower on MNIST.

5 Conclusion

With this paper we initiated the study of efficient and accurate hierarchical cluster-
ing using HNSW as a baseline graph index. We proposed three methods: Two based
on computing an MST in the HNSW graph, one based on the idea of incremental
searchers. The evaluation highlighted advantages and limitations of the proposed
methods. Interestingly, the most basic baseline of computing an MST of the HNSW
graph can lead to a good hierarchical clustering on the tested datasets. If good
quality needs to be ensured, the incremental searcher-based approach showed its
advantages.

While we believe that we cover much of the design space of hierarchical clus-
tering using graph-based approaches, there is much room for improvements. Our
most intriguing question is whether we can enhance the graph building progress
to build an augmented graph that contains information necessary to speed up
hierarchical clustering. From a theoretical point, it would be nice to understand
the theoretical limitations of the proposed methods. While we did not observe
quadratic scaling on real-world data, constructing such input instances would be an
important achievement for a theoretical understanding of the proposed methods.

Approximate Single-Linkage Clustering Using Graph-based Indexes 13

50,000 60,000 70,000 80,000 90,000 100,000 110,000

100

101

102

103

Data set size n

R
un

ti
m

e
[s

]
HNSWhssl: n1.13 ·log(n)0.03 VPTreeJava: n1.18

HNSWkruskal: n1.00 Scipy: n2.45

HNSWmst: n1.19 ·log(n)0.39

10,000 20,000 30,000 40,000 50,000 60,000 70,000
10−1

100

101

102

103

Data set size n

R
un

ti
m

e
[s

]

HNSWhssl: n1.08 ·log(n)0.15 VPTreeJava: n1.57

HNSWkruskal: n1.00 Scipy: n2.08

HNSWmst: n1.00

Fig. 4: Running time vs. sample size on ALOI (top) and MNIST (bottom)

Acknowledgments. This project received funding from the Innovation Fund Denmark
for the project DIREC (9142-00001B).

Disclosure of Interests. The authors have no competing interests to declare that are
relevant to the content of this article.

References

1. Abboud, A., Cohen-Addad, V., Houdrouge, H.: Subquadratic high-dimensional
hierarchical clustering. In: NeurIPS. pp. 11576–11586 (2019)

2. Alman, J., Williams, R.: Probabilistic polynomials and hamming nearest neighbors.
In: FOCS. pp. 136–150. IEEE Computer Society (2015)

14 Okkels, Thordsen, Aumüller, Zimek, and Schubert

3. Azizi, I., Echihabi, K., Palpanas, T.: Graph-based vector search: An experimental
evaluation of the state-of-the-art. Proc. ACM Manag. Data 3(1), 43:1–43:31 (2025)

4. Ester, M., Kriegel, H., Sander, J., Xu, X.: A density-based algorithm for discovering
clusters in large spatial databases with noise. In: KDD. pp. 226–231 (1996)

5. Gan, J., Tao, Y.: On the hardness and approximation of euclidean DBSCAN. ACM
Trans. Database Syst. 42(3), 14:1–14:45 (2017)

6. Huang, Y., Yu, S., Shun, J.: Faster parallel exact density peaks clustering. In: ACDA.
pp. 49–62. SIAM (2023)

7. Koga, H., Ishibashi, T., Watanabe, T.: Fast agglomerative hierarchical clustering
algorithm using locality-sensitive hashing. Knowl. Inf. Syst. 12(1), 25–53 (2007)

8. Kriegel, H., Schubert, E., Zimek, A.: The (black) art of runtime evaluation: Are we
comparing algorithms or implementations? Knowl. Inf. Syst. 52(2), 341–378 (2017)

9. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling salesman
problem. Proc. American Mathematical Society 7(1), 48–50 (Feb 1956)

10. Malkov, Y.A., Yashunin, D.A.: Efficient and Robust Approximate Nearest Neighbor
Search Using Hierarchical Navigable Small World Graphs. IEEE TPAMI 42(4) (2020)

11. Okkels, C.B., Aumüller, M., Thomsen, V.B., Zimek, A.: High-dimensional density-
based clustering using locality-sensitive hashing. In: EDBT. pp. 694–706 (2025)

12. Okkels, C.B., Aumüller, M., Zimek, A.: On the design of scalable outlier detection
methods using approximate nearest neighbor graphs. In: SISAP. pp. 170–184 (2024)

13. dos Santos, J.A., Iqbal, S.T., Naldi, M.C., Campello, R.J.G.B., Sander, J.: Hierarchical
density-based clustering using mapreduce. IEEE Trans. Big Data 7(1), 102–114 (2021)

14. Schneider, J., Vlachos, M.: Scalable density-based clustering with quality guarantees
using random projections. Data Min. Knowl. Discov. 31(4), 972–1005 (2017)

15. Schubert, E.: Hierarchical clustering without pairwise distances by incremental
similarity search. In: Proc. SISAP. pp. 238–252 (2024)

16. Schubert, E., Sander, J., Ester, M., Kriegel, H., Xu, X.: DBSCAN revisited, revisited:
Why and how you should (still) use DBSCAN. ACM Trans. Database Syst. 42(3),
19:1–19:21 (2017)

17. Sibson, R.: SLINK: an optimally efficient algorithm for the single-link cluster method.
Comput. J. 16(1), 30–34 (1973)

18. Sokal, R.R., Michener, C.D., et al.: A statistical method for evaluating systematic
relationships (1958)

19. Sokal, R.R., Rohlf, F.J.: The comparison of dendrograms by objective methods.
Taxon 11(2), 33–40 (1962)

20. Thordsen, E., Schubert, E.: Theoretical and practical insights into graph-based
indexing. In: Proc. Int. Conf. on Similarity Search and Applications, SISAP (2025)

21. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Cournapeau,
D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S., Brett,
M., Wilson, J., Millman, K.J., Mayorov, N., Nelson, A.R.J., Jones, E., Kern, R.,
Larson, E., Carey, C., Polat, I., Feng, Y., Moore, E.W., VanderPlas, J., Laxalde, D.,
Perktold, J., Cimrman, R., Henriksen, I., Quintero, E.A., Harris, C.R., Archibald,
A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy: Scipy 1.0-fundamental
algorithms for scientific computing in python. CoRR abs/1907.10121 (2019)

22. Wang, Y., Yu, S., Gu, Y., Shun, J.: Fast parallel algorithms for euclidean minimum
spanning tree and hierarchical spatial clustering. In: SIGMOD Conference. pp.
1982–1995. ACM (2021)

23. Weber, R., Schek, H., Blott, S.: A quantitative analysis and performance study for
similarity-search methods in high-dimensional spaces. In: VLDB. pp. 194–205 (1998)

24. Xu, H., Pham, N.: Scalable DBSCAN with random projections. In: NeurIPS (2024)

	Approximate Single-Linkage Clustering Using Graph-based Indexes: MST-based Approaches and Incremental Searchers

