Credit: Richard Bartz

Martin Aumüller Tobias Christiani Rasmus Pagh Michael Vesterli

PUFFINN

Parameterless and Universally Fast FInding of Nearest Neighbors

European Research Council Established by the European Commission Supporting top researchers from anywhere in the world

k-Nearest Neighbor Problem

- **Preprocessing**: Build DS for set $S \subseteq \mathbb{R}^d$ of n data points
- Task: Given query point $q \in \mathbb{R}$, return k closest points to q in S

Nearest neighbor search on words

- GloVe: learning algorithm to find vector representations for words
- GloVe.twitter dataset: 1.2M words, vectors trained from 2B tweets, **100 dimensions**
- Semantically similar words: nearest neighbor search on vectors

5. rana

7. eleutherodactylus

https://nlp.stanford.edu/projects/glove/

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

GloVe Examples (100d, 1.2M vectors)

"munich"

- "bayern"
- "cologne"
- "stuttgart"
- "berlin"
- "hamburg"

"germany"

- "austria"
- "switzerland"
- "german"
- "europe"
- "poland"

"algorithm"

• "algorithms"

- "optimization"
- "approximation"
- "iterative"
- "computation"

Our Results

Theory

- A novel Locality-Sensitive Hashing (LSH)-based algorithm for probabilistic *k*-NN
- Avoids standard reduction approach by [Har-Peled et al., 2012]

Practice

- Theory + algorithm engineering gives a fast implementation with provable guarantees
- in our experiments:
 - competitive with other state-of-theart approaches (w/o guarantees)
 - faster than state-of-the-art LSH (w/o guarantees)
 [FALCONN]

How does it work?

Locality-Sensitive Hashing (LSH) [Indyk-Motwani, 1998]

 $h(p) = h_1(p) \circ h_2(p) \circ h_3(p) \in \{0,1\}^3$

A family \mathcal{H} of hash functions is **localitysensitive**, if the collision probability of two points is decreasing with their distance to each other.

Standard LSH for Reporting Points at Distance $\leq r$

Our Approach: Solving k-NN using LSH

- Check buckets $j \in \{1, ..., L\}$, one-by-one
- keep track of current k closest points
- Goal: Report with prob. $\geq 1 \delta$

Termination: If $(1-p)^j \leq \delta$, report <u>current</u> top-k.

- What if there is no such *j*?
 - Try again with smaller K

probability of the **<u>current</u>** *k*-th nearest neighbor to collide.

Why does that work? Monotonicity of the LSH collision prob.

The Data Structure

Theoretical

• LSH Forest: Each repetition is a Trie build from LSH hash values [Bawa et al., 2005]

Practical

- Store indices of data set points sorted by hash code
- "Traversing the Trie" by binary search
- use lookup table for first levels

Works with any kind of LSH

PUFFINN Parameterless and Universally Fast Finding of Nearest Neighbors

"space parameter" + "quality parameter" no **internal** parameters Implicit Tries + Recycling LSH [Christiani, 2019] values + ???

Sketching to avoid distance computations

 Have to carry out (expensive) distance computations on candidates

• Can be reduced by storing compact sketch representations

SimHash [Charikar, 2002] 1-BitMinHash [König-Li, 2010]

Set τ such that with probability at least $1 - \varepsilon$ we don't disregard point that could be among NN.

Overall System Design

Experimental Evaluation

- Design choices in the implementation
 - Which LSH family to use? Cross-Polytope LSH [Andoni et al., 2015]
 - Which evaluation strategy to use? Pooling
 - Use sketches? Yes
 - Influence of parameters? More space helps, but saturates quickly
- Comparison to other existing k-NN implementations

Running time (Glove 100d, 1.2M, 10-NN)

A difficult (?) data set in \mathbb{R}^{3d}

n data points

$$x_{1} = (0^{d}, y_{1}, z_{1})$$

$$\vdots$$

$$x_{n-1} = (0^{d}, y_{n-1}, z_{n-1})$$

$$x_{n} = (v, w, 0^{d})$$

$$q_1 = (v, 0^d, r_1)$$
$$\vdots$$
$$q_m = (v, 0^d, r_m)$$

Running time ("Difficult", 1M, 10-NN)

— PUFFINN — — ONNG — ▲ IVF — → ANNOY — → VPTree(nmslib) — → FALCONN → FLANN

Credit: Richard Bartz

Summary

- Using LSH to solve exact k-NN (with probabilistic guarantees)
- Adaptive query algorithm
- Engineering tricks to make it fast (more in the paper!)
- Can ideas be applied to other settings?
 - Similarity Joins

A Bound on the Expected Running Time

• knows for each query q best stopping point in data structure

$$OPT(L, K, k, \delta) = \min\left\{\frac{\ln(1/\delta)}{p(q, x_k)^i} (i + \sum_{x \in P} p(q, x)^i) \mid 0 \le i \le K, \frac{\ln(1/\delta)}{p(q, x_k)^i} \ge L\right\}$$

• Lemma: In expectation, proposed algorithm takes time

 $O(OPT(L, K, k, \delta/k) + L(K + k))$

Fast Hash Function Evaluation

- Main Bottleneck: Computation of Hash Values
- Adapt the "pooling" technique of [Dahlgaard et al., 2017] and [Christiani, 2019]

 $K \cdot m$ independent hash functions from LSH family, $m \ll L$.

Pick K hash functions in repetition j using universal hash functions in each column.

Analysis using Cantelli's inequality → Requires different stopping criteria (factor 2 slowdown)

Our Approach: Solving k-NN using LSH

Influence of Index Size (Glove 100d, 1.2M, 10-NN)

Figure 3 Influence of index size to quality-performance trade-off.