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𝑘-Nearest Neighbor Problem

• Preprocessing: Build DS for set 𝑆 ⊆ ℝ% of 𝑛 data points
• Task: Given query point 𝑞 ∈ ℝ, return 𝑘 closest points to 𝑞 in 𝑆
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Probabilistic variant: Each nearest neighbor is 

reported with probability at least 1 − 𝛿.
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Nearest neighbor search on words

• GloVe: learning algorithm to find vector representations for words
• GloVe.twitter dataset: 1.2M words, vectors trained from 2B tweets, 

100 dimensions
• Semantically similar words: nearest neighbor search on vectors

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

https://nlp.stanford.edu/projects/glove/
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https://nlp.stanford.edu/pubs/glove.pdf


GloVe Examples (100d, 1.2M vectors)

“munich”

• “bayern”
• “cologne”
• “stuttgart”
• “berlin”
• “hamburg”

“germany”

• “austria”
• “switzerland”
• “german”
• “europe”
• “poland”

“algorithm”

• “algorithms”
• “optimization”
• “approximation”
• “iterative”
• “computation”
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Our Results

Theory
• A novel Locality-Sensitive 

Hashing (LSH)-based algorithm 
for probabilistic 𝑘-NN
• Avoids standard reduction 

approach by 
[Har-Peled et al., 2012]

Practice
• Theory + algorithm engineering 

gives a fast implementation with 
provable guarantees
• in our experiments:
• competitive with other state-of-the-

art approaches (w/o guarantees)
• faster than state-of-the-art LSH 

(w/o guarantees)
[FALCONN]
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How does it work? 
Locality-Sensitive Hashing (LSH) [Indyk-Motwani, 1998]

=

ℎ 𝑝 = ℎ0 𝑝 ∘ ℎ2 𝑝 ∘ ℎ3 𝑝 ∈ 0,1 3

A family ℋ of hash functions is locality-
sensitive, if the collision probability of 

two points is decreasing with their 
distance to each other.
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Standard LSH for Reporting Points at Distance ≤ 𝑟

ℎ0
= ℎ

′0,0
∘ ⋯

∘ ℎ′;
,0
∈ 𝑅

;

ℎ3ℎ2 ℎ= ℎ> ℎ?

…

Query Algorithm: Collect all points that collide with 𝑞 under ℎ0, … , ℎ?. Return all points at distance ≤ 𝑟.
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𝑘-NN?
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Our Approach: Solving 𝑘-NN using LSH

• Check buckets 𝑗 ∈ {1, … , 𝐿}, 
one-by-one
• keep track of current 𝑘

closest points
• Goal: 

Report with prob. ≥ 1 − 𝛿

• What if there is no such 𝑗?
• Try again with smaller 𝐾

ℎ0 ℎ3ℎ2 ℎ= ℎ> ℎ?

…

𝑆

Termination: If 1 − 𝑝 G ≤ 𝛿, report current top-𝑘. 

probability of the current 𝑘-th nearest neighbor to collide.  

Why does that work? Monotonicity of the LSH collision prob.

= ℎ
′0,0
∘ ⋯

∘ ℎ′;
,0
∈ 𝑅

;
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The Data Structure

Theoretical
• LSH Forest: Each repetition is a 

Trie build from LSH hash values
[Bawa et al., 2005]

Practical
• Store indices of data set points 

sorted by hash code
• ”Traversing the Trie” by binary 

search
• use lookup table for first levels

…
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PUFFINN
Parameterless and Universally Fast FInding

of Nearest Neighbors

Works with any 
kind of LSH

“space parameter” + 
“quality parameter”

no internal parameters

Implicit Tries + 
Recycling LSH 
values + ???

[Christiani, 2019]
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Sketching to avoid distance computations

• Have to carry out (expensive) 
distance computations on 
candidates
• Can be reduced by storing 

compact sketch representations

𝑞

𝑥

𝑥

1011100101

0101110101

Sketch representation

SimHash [Charikar, 2002]
1-BitMinHash [König-Li, 2010]

Set 𝜏 such that with probability at least 1 − 𝜀 we don’t
disregard point that could be among NN.

At least 𝜏 collisions? 

Yes No

skipcompute 
dist(𝑞, 𝑥)
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Easy to analyze:
Sum of Bernoulli trials of
Pr(𝑋 = 1) = 𝑓(dist(𝑞, 𝑥))

𝑞



Overall System Design
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Experimental Evaluation

• Design choices in the implementation
• Which LSH family to use? Cross-Polytope LSH [Andoni et al., 2015]
• Which evaluation strategy to use? Pooling
• Use sketches? Yes
• Influence of parameters? More space helps, but saturates quickly

• Comparison to other existing 𝑘-NN implementations
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Running time (Glove 100d, 1.2M, 10-NN)
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A difficult (?) data set in ℝ3%

𝑥0 = 0%, 𝑦0, 𝑧0

⋮

𝑥XY0 = 0%, 𝑦XY0, 𝑧XY0
𝑥X = (𝑣, 𝑤, 0%)

𝑦\, 𝑧\, 𝑣, 𝑤, 𝑟\ ∼ 𝒩% 0,
1
2𝑑

𝑛 data points 𝑚 query points

𝑞0 = 𝑣, 0%, 𝑟0

⋮

𝑞b = (𝑣, 0%, 𝑟b)

15



16

Running time (“Difficult”, 1M, 10-NN)



Summary

• Using LSH to solve exact 𝑘-NN
(with probabilistic guarantees)
• Adaptive query algorithm
• Engineering tricks to make it fast

(more in the paper!)

• Can ideas be applied to other
settings?
• Similarity Joins

https://github.com/puffinn/puffinn
https://github.com/puffinn/esa-paper

Credit: Richard Bartz
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https://github.com/puffinn/puffinn
https://github.com/puffinn/esa-paper


A Bound on the Expected Running Time

• knows for each query 𝒒
best stopping point in data structure

• Lemma: In expectation, proposed algorithm takes time

𝑂(𝑂𝑃𝑇 𝐿, 𝐾, 𝑘, 𝛿/𝑘 + 𝐿 𝐾 + 𝑘 )
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Fast Hash Function Evaluation

• Main Bottleneck: Computation of Hash Values
• Adapt the “pooling” technique of [Dahlgaard et al., 2017] and 

[Christiani, 2019]

𝑚

𝐾

Pick 𝐾 hash functions in repetition 𝑗 using universal hash 
functions in each column.

𝐾 ⋅ 𝑚 independent hash functions from LSH family, 𝑚 ≪ 𝐿.

Analysis using Cantelli’s inequality →
Requires different stopping criteria (factor 2 slowdown)
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Our Approach: Solving 𝑘-NN using LSH

• Check buckets 𝑗 ∈ {1, … , 𝐿}, one-
by-one
• keep track of closest 𝑘 points found 

so far

• What if there is no such 𝑗?
• Try again with smaller 𝐾

ℎ0 ℎ3ℎ2 ℎ= ℎ> ℎ?

…

𝑆

Termination: If 1 − 𝑝 G ≤ 𝛿, report top-𝑘. 

probability of the current 𝑘-th nearest neighbor to collide.  

Why does that work? Monotonicity of the LSH collision prob.

= ℎ
′0,0
∘ ⋯

∘ ℎ′;
,0
∈ 𝑅

;

X

Want: 𝟏 − 𝒑∗ 𝒋 ≤ 𝜹, 
(𝒑∗ collision prob. of true 𝒌-NN)

Montonocity of LSH: 𝒑∗ ≥ 𝒑.
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Influence of Index Size (Glove 100d, 1.2M, 10-NN)
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