
PUFFINN
Parameterless and Universally Fast FInding

of Nearest Neighbors

Martin Aumüller
Tobias Christiani

Rasmus Pagh
Michael Vesterli

Credit: Richard Bartz

1

𝑘-Nearest Neighbor Problem

• Preprocessing: Build DS for set 𝑆 ⊆ ℝ% of 𝑛 data points
• Task: Given query point 𝑞 ∈ ℝ, return 𝑘 closest points to 𝑞 in 𝑆

2

✓
✓

✓

✓
✓

✓
Probabilistic variant: Each nearest neighbor is

reported with probability at least 1 − 𝛿.

𝑞

𝑞

Nearest neighbor search on words

• GloVe: learning algorithm to find vector representations for words
• GloVe.twitter dataset: 1.2M words, vectors trained from 2B tweets,

100 dimensions
• Semantically similar words: nearest neighbor search on vectors

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

https://nlp.stanford.edu/projects/glove/

3

https://nlp.stanford.edu/pubs/glove.pdf

GloVe Examples (100d, 1.2M vectors)

“munich”

• “bayern”
• “cologne”
• “stuttgart”
• “berlin”
• “hamburg”

“germany”

• “austria”
• “switzerland”
• “german”
• “europe”
• “poland”

“algorithm”

• “algorithms”
• “optimization”
• “approximation”
• “iterative”
• “computation”

4

Our Results

Theory
• A novel Locality-Sensitive

Hashing (LSH)-based algorithm
for probabilistic 𝑘-NN
• Avoids standard reduction

approach by
[Har-Peled et al., 2012]

Practice
• Theory + algorithm engineering

gives a fast implementation with
provable guarantees
• in our experiments:
• competitive with other state-of-the-

art approaches (w/o guarantees)
• faster than state-of-the-art LSH

(w/o guarantees)
[FALCONN]

5

How does it work?
Locality-Sensitive Hashing (LSH) [Indyk-Motwani, 1998]

=

ℎ 𝑝 = ℎ0 𝑝 ∘ ℎ2 𝑝 ∘ ℎ3 𝑝 ∈ 0,1 3

A family ℋ of hash functions is locality-
sensitive, if the collision probability of

two points is decreasing with their
distance to each other.

6

Standard LSH for Reporting Points at Distance ≤ 𝑟

ℎ0
= ℎ

′0,0
∘ ⋯

∘ ℎ′;
,0
∈ 𝑅

;

ℎ3ℎ2 ℎ= ℎ> ℎ?

…

Query Algorithm: Collect all points that collide with 𝑞 under ℎ0, … , ℎ?. Return all points at distance ≤ 𝑟.
7

Dataset 𝑆

𝑘-NN?

𝑞

𝑞 𝑞 𝑞 𝑞 𝑞 𝑞

Our Approach: Solving 𝑘-NN using LSH

• Check buckets 𝑗 ∈ {1, … , 𝐿},
one-by-one
• keep track of current 𝑘

closest points
• Goal:

Report with prob. ≥ 1 − 𝛿

• What if there is no such 𝑗?
• Try again with smaller 𝐾

ℎ0 ℎ3ℎ2 ℎ= ℎ> ℎ?

…

𝑆

Termination: If 1 − 𝑝 G ≤ 𝛿, report current top-𝑘.

probability of the current 𝑘-th nearest neighbor to collide.

Why does that work? Monotonicity of the LSH collision prob.

= ℎ
′0,0
∘ ⋯

∘ ℎ′;
,0
∈ 𝑅

;

X

8

X

X X
X X

X

The Data Structure

Theoretical
• LSH Forest: Each repetition is a

Trie build from LSH hash values
[Bawa et al., 2005]

Practical
• Store indices of data set points

sorted by hash code
• ”Traversing the Trie” by binary

search
• use lookup table for first levels

…

0

0 0

1

1 1

0 0 0 0 1111

9

PUFFINN
Parameterless and Universally Fast FInding

of Nearest Neighbors

Works with any
kind of LSH

“space parameter” +
“quality parameter”

no internal parameters

Implicit Tries +
Recycling LSH
values + ???

[Christiani, 2019]

10

Sketching to avoid distance computations

• Have to carry out (expensive)
distance computations on
candidates
• Can be reduced by storing

compact sketch representations

𝑞

𝑥

𝑥

1011100101

0101110101

Sketch representation

SimHash [Charikar, 2002]
1-BitMinHash [König-Li, 2010]

Set 𝜏 such that with probability at least 1 − 𝜀 we don’t
disregard point that could be among NN.

At least 𝜏 collisions?

Yes No

skipcompute
dist(𝑞, 𝑥)

11

Easy to analyze:
Sum of Bernoulli trials of
Pr(𝑋 = 1) = 𝑓(dist(𝑞, 𝑥))

𝑞

Overall System Design

12

Experimental Evaluation

• Design choices in the implementation
• Which LSH family to use? Cross-Polytope LSH [Andoni et al., 2015]
• Which evaluation strategy to use? Pooling
• Use sketches? Yes
• Influence of parameters? More space helps, but saturates quickly

• Comparison to other existing 𝑘-NN implementations

13

Running time (Glove 100d, 1.2M, 10-NN)

14

A difficult (?) data set in ℝ3%

𝑥0 = 0%, 𝑦0, 𝑧0

⋮

𝑥XY0 = 0%, 𝑦XY0, 𝑧XY0
𝑥X = (𝑣, 𝑤, 0%)

𝑦\, 𝑧\, 𝑣, 𝑤, 𝑟\ ∼ 𝒩% 0,
1
2𝑑

𝑛 data points 𝑚 query points

𝑞0 = 𝑣, 0%, 𝑟0

⋮

𝑞b = (𝑣, 0%, 𝑟b)

15

16

Running time (“Difficult”, 1M, 10-NN)

Summary

• Using LSH to solve exact 𝑘-NN
(with probabilistic guarantees)
• Adaptive query algorithm
• Engineering tricks to make it fast

(more in the paper!)

• Can ideas be applied to other
settings?
• Similarity Joins

https://github.com/puffinn/puffinn
https://github.com/puffinn/esa-paper

Credit: Richard Bartz

17

https://github.com/puffinn/puffinn
https://github.com/puffinn/esa-paper

A Bound on the Expected Running Time

• knows for each query 𝒒
best stopping point in data structure

• Lemma: In expectation, proposed algorithm takes time

𝑂(𝑂𝑃𝑇 𝐿, 𝐾, 𝑘, 𝛿/𝑘 + 𝐿 𝐾 + 𝑘)

18

Fast Hash Function Evaluation

• Main Bottleneck: Computation of Hash Values
• Adapt the “pooling” technique of [Dahlgaard et al., 2017] and

[Christiani, 2019]

𝑚

𝐾

Pick 𝐾 hash functions in repetition 𝑗 using universal hash
functions in each column.

𝐾 ⋅ 𝑚 independent hash functions from LSH family, 𝑚 ≪ 𝐿.

Analysis using Cantelli’s inequality →
Requires different stopping criteria (factor 2 slowdown)

19

Our Approach: Solving 𝑘-NN using LSH

• Check buckets 𝑗 ∈ {1, … , 𝐿}, one-
by-one
• keep track of closest 𝑘 points found

so far

• What if there is no such 𝑗?
• Try again with smaller 𝐾

ℎ0 ℎ3ℎ2 ℎ= ℎ> ℎ?

…

𝑆

Termination: If 1 − 𝑝 G ≤ 𝛿, report top-𝑘.

probability of the current 𝑘-th nearest neighbor to collide.

Why does that work? Monotonicity of the LSH collision prob.

= ℎ
′0,0
∘ ⋯

∘ ℎ′;
,0
∈ 𝑅

;

X

Want: 𝟏 − 𝒑∗ 𝒋 ≤ 𝜹,
(𝒑∗ collision prob. of true 𝒌-NN)

Montonocity of LSH: 𝒑∗ ≥ 𝒑.

20

Influence of Index Size (Glove 100d, 1.2M, 10-NN)

21

