

IT University of Copenhagen

Roadmap

01

Similarity Search in High-Dimensions: Setup/Experimental Approach

02

Survey of state-ofthe-art Nearest Neighbor Search algorithms

03

Similarity Search on the GPU, in external memory, and in distributed settings

1. Similarity Search in High-Dimensions: Setup/Experimental Approach

k-Nearest Neighbor Problem

- **Preprocessing**: Build DS for set *S* of *n* data points
- Task: Given query point q, return k closest points to q in S

Nearest neighbor search on words

- GloVe: learning algorithm to find vector representations for words
- GloVe.twitter dataset: **1.2M words**, vectors trained from **2B tweets**, 100 dimensions
- Semantically similar words: nearest neighbor search on vectors

5. rana

7. eleutherodactylus

https://nlp.stanford.edu/projects/glove/

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

GloVe Examples

\$ grep -n "sicily" glove.twitter.27B.100d.txt 118340:sicily -0.43731 -1.1003 0.93183 0.13311 0.17207 ...

"sicily" • sardinia tuscany dubrovnik liguria naples "algorithm" • algorithms optimization approximation iterative computation "engineering" • engineer accounting research • science development

Basic Setup

- Data is described by high-dimensional feature vectors
- Exact similarity search is difficult in high dimensions
- data structures and algorithms suffer
 - **exponential dependence** on dimensionality
 - in time, space, or both

Why is Exact NN difficult?

- Choose n random points from $N(0, 1/d)^d$, for large d
- Choose a random query point

 nearest and furthest neighbor basically at same distance

Difficulty measure for queries

• Given query q and distances r_1, \ldots, r_k to k nearest neighbors, define

$$D(q) = -\left(\frac{1}{k}\sum \ln \underline{r_i}/\underline{r_k}\right)^{-1}$$

Based on the concept of local intrinsic dimensionality [Houle, 2013] and its MLE estimator [Amsaleg et al., 2015]

LID Distribution

Dataset	Data Points	Dimensions
SIFT [9]	1000000	128
MNIST	65000	784
Fashion-MNIST $[19]$	65000	784
GLOVE [17]	1183514	100
GLOVE-2M [17]	2196018	300
GNEWS [16]	3000000	300

Results (GloVe, 10-NN, 1.2M points)

http://ann-benchmarks.com/sisap19/faiss-ivf.html

2. STATE-OF-THE-ART NEAREST NEIGHBOR SEARCH

General Pipeline

Index generates candidates

Brute-force search on candidates

GloVe: 1.2 M points, inner product as distance measure

Automatically SIMD vectorized with clang –O3: <u>https://godbolt.org/z/TJX68s</u>

https://gist.github.com/maumueller/720d0f71664bef694bd56b2aeff80b17

Manual vectorization (256 bit registers)

Brute-force on bit vectors

- Another popular distance measure is Hamming distance
 - Number of positions in which two bit strings differ
- Can be nicely packed into 64-bit words
- Hamming distance of two words is just bitcount of the XOR

```
inline uint64_t distance(const uint64_t* x, const uint64_t* y, int f) {
    uint64_t res = 0;
    for (int i = 0; i < f; i++) {
        res += __builtin_popcountll(x[i] ^ y[i]));
    }
    return res;
}</pre>
```

- 1.3 ms per query (128 bits)
- 6 GB/s throughput

[Christiani, 2019]

Sketching to avoid distance computations

- Distance computations on bit vectors faster than Euclidean distance/inner product
- Their number can be reduced by storing compact sketch representations

х

SimHash [Charikar, 2002] 1-BitMinHash [König-Li, 2010]

Sketch representation

Set τ such that with probability at least $1 - \varepsilon$ we don't disregard point that could be among NN.

General Pipeline

Index generates candidates

Brute-force search on candidates

PUFFINN

PARAMETERLESS AND UNIVERSALLY FAST FINDING OF NEAREST NEIGHBORS

[A., Christiani, Pagh, Vesterli, 2019]

https://github.com/puffinn/puffinn

Credit: Richard Bartz

How does it work?

Locality-Sensitive Hashing (LSH) [Indyk-Motwani, 1998]

 $h(p) = h_1(p) \circ h_2(p) \circ h_3(p) \in \{0,1\}^3$

A family \mathcal{H} of hash functions is **localitysensitive**, if the collision probability of two points is decreasing with their distance to each other.

Solving k-NN using LSH (with failure prob. δ)

Termination: If $(1-p)^j \leq \delta$, report <u>current</u> top-k.

Not terminated? Decrease *K*!

probability of the current k-th nearest neighbor to collide.

The Data Structure

Theoretical

• LSH Forest: Each repetition is a Trie build from LSH hash values [Bawa et al., 2005]

Practical

- Store indices of data set points sorted by hash code
- "Traversing the Trie" by binary search
- use lookup table for first levels

Overall System Design

Running time (Glove 100d, 1.2M, 10-NN)

A difficult (?) data set in \mathbb{R}^{3d}

n data points

$$x_{1} = (0^{d}, y_{1}, z_{1})$$

$$\vdots$$

$$x_{n-1} = (0^{d}, y_{n-1}, z_{n-1})$$

$$x_{n} = (v, w, 0^{d})$$

$$q_1 = (v, 0^d, r_1)$$
$$\vdots$$
$$q_m = (v, 0^d, r_m)$$

Running time ("Difficult", 1M, 10-NN)

—●— PUFFINN —■— ONNG —▲— IVF —↓— ANNOY —●— VPTree(nmslib) —●— FALCONN —◆— FLANN

Graph-based Similarity Search

Building a Small World Graph

Refining a Small World Graph

Goal: Keep out-degree as small as possible (while maintaining "large-enough" in-degree)!

HNSW/ONNG: [Malkov et al., 2020], [Iwasaki et al., 2018]

Running time (Glove 100d, 1.2M, 10-NN)

Open Problems Nearest Neighbor Search

- Data-dependent LSH with guarantees?
- Theoretical sound Small-World Graphs?
- Multi-core implementations
 - Good? [Malkov et al., 2020]
- Alternative ways of sketching data?

3. Similarity Search on the GPU, in External Memory, and in Distributed Settings

Nearest Neighbors on the GPU: FAISS

[Johnson et al., 2017] <u>https://github.com/facebookresearch/faiss</u>

- GPU setting
 - Data structure is held in GPU memory
 - Queries come in batches of say 10,000 queries per time
- Results:
 - http://ann-benchmarks.com/sift-128-euclidean_10 euclidean-batch.html

FAISS/2

- Data structure
 - Run k-means with large number of centroids
 - Each data point is associated with closest centroid
- Query
 - Find *L* closest centroids
 - Return k closest points found in points associated with these centroids

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

Nearest Neighbors on the GPU: GGNN [Groh et al., 2019]

Nearest Neighbors in External Memory [Subramanya et al., 2019]

Distributed Setting: Similarity Join

- Problem
 - given sets R and S of size n,
 - and similarity threshold λ , compute $R \bowtie_{\lambda} S = \{(x, y) \in R \times S \mid sim(x, y) \ge \lambda\}$
- Similarity measures
 - Jaccard similarity
 - Cosine similarity
- Naive: $O(n^2)$ distance computations

Map-Reduce-based Similarity Join

Single Core on Xeon E5-2630v2 (2.60 GHz)

Hadoop cluster (12 nodes, 24 HT per node)

									I	
LIVEJ	PPJ		PEL	Π	PEL	PEL	PEL	PPJ	MPJ	ALL
	345		88.9		22.1	12.0	6.52	3.50	1.88	1.02
	PEL	-	PPJ		PPJ	PPJ	PPJ	GRP	ALL	MPJ
						GRP	GRP	PEL	PEL	PEL
							MPJ	MPJ	PPJ	
								ALL	GRP	
								PP+	PP+	
NETFLIX	ALI		ALL		ADP	ADP	ADP	ADP	PPJ	PPJ
	1235		494		146	76.4	36.6	15.6	4.73	0.894
	PPJ	-	ADP					PPJ	GRP	ALL
	GRF		PPJ					GRP		PEL
			GRP							GRP
										MPJ
ORKUT	PPJ		PPJ		PPJ	GRP	GRP	MPJ	MPJ	MPJ
	213		79.4		33.4	21.0	12.9	7.69	4.28	2.06
	GRE	-	GRP		GRP	PPJ	PPJ	GRP	ALL	ALL
					PEL	PEL	MPJ	PPJ	PEL	PEL
						MPJ	PEL	PEL	GRP	PP+
							l	ATT	DDI	DDI

LIVE	313 VJ	285 VJ	278 <u>VJ</u> MG	254 <u>VJ</u> MG	243 <u>VJ</u> GJ, MG
NETF	Т	Т	527 VJ	215 VJ	161 VJ
ORKU	Т	1592 MG	941 <u>VJ</u> MG	761 <u>GJ</u> VJ	681 VJ

Solved almost-optimally in the MPC model [Hu et al., 2019]

 $O(n^2)$ local work for distance computations!

Another approach: DANNY

[A., Ceccarello, Pagh, 2020] In preparation, https://github.com/cecca/danny

Implementation in Rust using timely dataflow

https://github.com/TimelyDataflow/timely-dataflow

Thrill

An EXPERIMENTAL Algorithmic Distributed Big Data Batch Processing Framework in C++

http://project-thrill.org

Results

Roadmap

01

Similarity Search in High-Dimensions: Setup/Experimental Approach

02

Survey of state-ofthe-art Nearest Neighbor Search algorithms

03

Similarity Search on the GPU, in external memory, and in distributed settings

References

- [Amsaleg, Chelly, Furon, Girard, Houle, Kawarabayashi, Nett, 2015]: Estimating local intrinsic dimensionality. KDD 2015.
- [A., Bernhardsson, Faithfull, 2020]: ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Inf. Syst. 87 (2020), see https://arxiv.org/abs/1807.05614 for an open access version.
- [A., Ceccarello, 2019]: The role of local intrinsic dimensionality in benchmarking nearest neighbor search. In: SISAP 2019, see http://ann-benchmarks.com/sisap19/.
- [A., Christiani, Pagh, Vesterli, 2019]: PUFFINN: parameterless and universally fast finding of nearest neighbors. In: ESA 2019, see https://github.com/puffinn/puffinn
- [Christiani, 2019]: Fast locality-sensitive hashing frameworks for approximate near neighbor search
- [Fier, Augsten, Bouros, Leser, Freytag, 2018]: Set similarity joins on MapReduce: An experimental survey. VLDB 2018.
- [Groh, Ruppert, Wieschollek, Lensch, 2019]: GGNN: Graph-based GPU nearest neighbor search https://arxiv.org/abs/1912.01059
- [Houle, 2013]: Dimensionality, discriminability, density and distance distributions. ICDMW 2013.
- [Hu, Yi, Tao, 2019]: Output-optimal massively parallel algorithms for similarity joins. ACM Transactions on Database Systems, 2019.
- [Iwasaki, Miyazaki, 2018]: Optimization of Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data, https://arxiv.org/abs/1810.07355
- [Indyk, Motwani, 1998]: Approximate Nearest Neighbors: Towards removing the curse of dimensionality, STOC 1998.
- [Johnson, Douze, Jegou, 2017]: Billion-scale similarity search with GPUs, <u>https://arxiv.org/abs/1702.08734</u>.
- [Malkov, Yashunin, 2020]: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE TPAM 2020.
- [Mann, Augsten, Bouros, 2016]: An empirical evaluation of set similarity join techniques. VLDB 2016.
- [McSherry, Isard, Murray, 2015], Scalability! But at what COST? USENIX HotOS 2015.
- [Subramanya, Devvrit, Kadekodi, Krishnaswamy, Simhadri, 2019]: DiskANN: Fast accurate billion-point nearest neighbor search on a single node. NeurIPS 2019

Extra slides

PUFFINN: Fast Hash Function Evaluation

- Main Bottleneck: Computation of Hash Values
- Adapt the "pooling" technique of [Dahlgaard et al., 2017] and [Christiani, 2019]

