
Algorithm Engineering for High-
Dimensional Similarity Search

Problems
Martin Aumüller

IT University of Copenhagen

Roadmap

Similarity Search in
High-Dimensions:
Setup/Experimental
Approach

01
Survey of state-of-
the-art Nearest
Neighbor Search
algorithms

02
Similarity Search on
the GPU, in external
memory, and in
distributed settings

03

2

1. Similarity Search in High-
Dimensions: Setup/Experimental

Approach

3

𝑘-Nearest Neighbor Problem

• Preprocessing: Build DS for set 𝑆 of 𝑛 data points

• Task: Given query point 𝑞, return 𝑘 closest points to 𝑞 in 𝑆

4

✓
✓

✓

✓
✓

✓

Nearest neighbor search on words

• GloVe: learning algorithm to find vector representations for words

• GloVe.twitter dataset: 1.2M words, vectors trained from 2B tweets,
100 dimensions

• Semantically similar words: nearest neighbor search on vectors

5Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe: Global Vectors for Word Representation.

https://nlp.stanford.edu/projects/glove/

https://nlp.stanford.edu/pubs/glove.pdf

$ grep -n "sicily" glove.twitter.27B.100d.txt
118340:sicily -0.43731 -1.1003 0.93183 0.13311 0.17207 …

GloVe Examples

• sardinia

• tuscany

• dubrovnik

• liguria

• naples

“sicily”

• algorithms

• optimization

• approximation

• iterative

• computation

“algorithm”

• engineer

• accounting

• research

• science

• development

“engineering”

6

Basic Setup

• Data is described by high-dimensional
feature vectors

• Exact similarity search is difficult in
high dimensions

• data structures and algorithms suffer
• exponential dependence on

dimensionality

• in time, space, or both

7

Why is Exact NN difficult?

• Choose 𝑛 random points from 𝑁 0, 1/𝑑 𝑑, for large 𝑑

• Choose a random query point

• nearest and furthest neighbor
basically at same distance

8

2 ± 1/√𝑑

Performance
on GloVe

9

Difficulty measure for queries

• Given query 𝑞 and distances 𝑟1, … , 𝑟𝑘 to
𝑘 nearest neighbors, define

𝐷 𝑞 = −
1

𝑘
ln𝑟𝑖/𝑟𝑘

−1

10

𝑞

Based on the concept of local intrinsic dimensionality [Houle, 2013] and its MLE estimator [Amsaleg et al., 2015]

LID Distribution

11

Results (GloVe, 10-NN, 1.2M points)

http://ann-benchmarks.com/sisap19/faiss-ivf.html

Easy

Difficult

Middle

12

http://ann-benchmarks.com/sisap19/faiss-ivf.html

2. STATE-OF-THE-ART
NEAREST NEIGHBOR SEARCH

13

General Pipeline

Index generates candidates

Brute-force search on
candidates

14

Brute-force search

𝑝1 𝑝𝑛

GloVe: 1.2 M points, inner product as distance measure

400 byte 400 byte

Automatically SIMD vectorized with clang –O3: https://godbolt.org/z/TJX68s

• 100ms per scan
• 4.2 GB/s throughput
• CPU-bound

15

https://godbolt.org/z/TJX68s

Manual vectorization (256 bit registers)

𝑥

𝑦

…

…

0 0 0 0 0 0 0 0

Parallel multiply

Parallel add to result register

Horizontal sum and cast to float

• 25 ms per query
• 16 GB/s
• 16.5 GB/s single-

thread max on my
laptop

• Memory-bound

https://gist.github.com/maumueller/720d0f71664bef694bd56b2aeff80b17

16

https://gist.github.com/maumueller/720d0f71664bef694bd56b2aeff80b17

Brute-force on bit vectors

• Another popular distance measure is Hamming distance
• Number of positions in which two bit strings differ

• Can be nicely packed into 64-bit words

• Hamming distance of two words is just bitcount of the XOR

• 1.3 ms per query (128 bits)
• 6 GB/s throughput

17

Sketching to avoid distance computations

• Distance computations on bit
vectors faster than Euclidean
distance/inner product

• Their number can be reduced by
storing compact sketch
representations

18

𝑞

𝑥

𝑥

1011100101

0101110101

Sketch representation

SimHash [Charikar, 2002]
1-BitMinHash [König-Li, 2010]

Set 𝜏 such that with probability at least 1 − 𝜀 we don’t
disregard point that could be among NN.

At least 𝜏 collisions?

Yes No

skip
compute
dist(𝑞, 𝑥)

Easy to analyze:
Sum of Bernoulli trials of
Pr(𝑋 = 1) = 𝑓(dist(𝑞, 𝑥))

𝑞

Can distance
computation be

avoided?

[Christiani, 2019]

General Pipeline

Index generates candidates

Brute-force search on
candidates

19

PUFFINN

PARAMETERLESS
AND UNIVERSALLY
FAST FINDING OF
NEAREST
NEIGHBORS

20

[A., Christiani, Pagh, Vesterli, 2019]

https://github.com/puffinn/puffinn

Credit: Richard Bartz

https://github.com/puffinn/puffinn

How does it work?
Locality-Sensitive Hashing (LSH) [Indyk-Motwani, 1998]

21

=

ℎ 𝑝 = ℎ1 𝑝 ∘ ℎ2 𝑝 ∘ ℎ3 𝑝 ∈ 0,1 3

A family ℋ of hash functions is locality-
sensitive, if the collision probability of

two points is decreasing with their
distance to each other.

Solving 𝑘-NN using LSH (with failure prob. 𝛿)

22

ℎ3ℎ2 ℎ4 ℎ5 ℎ𝐿

…

Dataset 𝑆

Termination: If 1 − 𝑝 𝑗 ≤ 𝛿, report current top-𝑘.

probability of the current 𝑘-th nearest neighbor to collide. Not terminated? Decrease 𝐾!

The Data Structure

Theoretical

• LSH Forest: Each repetition is a
Trie build from LSH hash values
[Bawa et al., 2005]

Practical

• Store indices of data set points
sorted by hash code

• ”Traversing the Trie” by binary
search

• use lookup table for first levels

23

…

0

0 0

1

1 1

0 0 0 0 1111

Overall System Design

24

Running time (Glove 100d, 1.2M, 10-NN)

25

A difficult (?) data set in ℝ3𝑑

𝑥1 = 0𝑑, 𝑦1, 𝑧1

⋮

𝑥𝑛−1 = 0𝑑 , 𝑦𝑛−1, 𝑧𝑛−1
𝑥𝑛 = (𝑣,𝑤, 0𝑑)

𝑦𝑖 , 𝑧𝑖 , 𝑣, 𝑤, 𝑟𝑖 ∼ 𝒩𝑑 0,
1

2𝑑

𝑛 data points 𝑚 query points

𝑞1 = 𝑣, 0𝑑 , 𝑟1

⋮

𝑞𝑚 = (𝑣, 0𝑑 , 𝑟𝑚)

26

27

Running time (“Difficult”, 1M, 10-NN)

Graph-based Similarity Search

28

Building a Small World Graph

29

Refining a Small World Graph

Goal: Keep out-degree as small as possible (while maintaining “large-enough” in-degree)!

30

HNSW/ONNG: [Malkov et al., 2020], [Iwasaki et al., 2018]

Running time (Glove 100d, 1.2M, 10-NN)

31

Open Problems Nearest Neighbor Search

• Data-dependent LSH with guarantees?

• Theoretical sound Small-World Graphs?

• Multi-core implementations
• Good? [Malkov et al., 2020]

• Alternative ways of sketching data?

32

3. Similarity Search on the
GPU, in External Memory,
and in Distributed Settings

33

Nearest Neighbors on the GPU: FAISS
[Johnson et al., 2017] https://github.com/facebookresearch/faiss

• GPU setting
• Data structure is held in GPU memory

• Queries come in batches of say 10,000 queries per time

• Results:
• http://ann-benchmarks.com/sift-128-euclidean_10_euclidean-batch.html

34

https://github.com/facebookresearch/faiss
http://ann-benchmarks.com/sift-128-euclidean_10_euclidean-batch.html

FAISS/2

• Data structure
• Run k-means with large number of

centroids

• Each data point is associated with
closest centroid

• Query
• Find 𝐿 closest centroids

• Return 𝑘 closest points found in
points associated with these
centroids

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

35

https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_digits.html

Nearest Neighbors on the GPU: GGNN
[Groh et al., 2019]

36

Nearest Neighbors in External Memory
[Subramanya et al., 2019]

RAM SSD

ෞ𝑥1

ෞ𝑥𝑛

𝑥1 𝑥𝑛
…

…

compressed vectors
(32 byte per vector)

Product Quantization
Original vectors

(~400 byte per vector)

37

Distributed Setting: Similarity Join

• Problem
• given sets 𝑅 and 𝑆 of size 𝑛,

• and similarity threshold 𝜆, compute
𝑅 ⋈𝜆 𝑆 = { 𝑥, 𝑦 ∈ 𝑅 × 𝑆 ∣ 𝑠𝑖𝑚 𝑥, 𝑦 ≥ 𝜆}

• Similarity measures
• Jaccard similarity

• Cosine similarity

• Naive: 𝑂 𝑛2 distance computations

𝑅

𝑆

38

Map-Reduce-based Similarity Join
Single Core on Xeon E5-2630v2 (2.60 GHz) Hadoop cluster (12 nodes, 24 HT per node)

[Fier et al., 2018]

Scalability! But at what COST? [McSherry et al., 2015]

[Mann et al., 2016] 39

Solved almost-optimally in the MPC model
[Hu et al., 2019]

𝑅

𝑆

Hash
using
LSH

(𝑥, ℎ𝑖(x))

(𝑦, ℎ𝑖(y))

Join on
hash

(𝑥, 𝑦, ℎ𝑖(x))

Similarity
at least
𝜆?

(𝑥, 𝑦)

Emit

𝑂(𝑛2) local work for distance computations!

40

Another approach: DANNY
[A., Ceccarello, Pagh, 2020] In preparation, https://github.com/cecca/danny

𝑅

𝑆

Cartesian Product
LSH + Sketching,

candidate verification
locally

Emit/Collect

Implementation in Rust using timely dataflow

https://github.com/TimelyDataflow/timely-dataflow

41

https://github.com/Cecca/danny
https://github.com/TimelyDataflow/timely-dataflow

Results

42

Roadmap

Similarity Search in
High-Dimensions:
Setup/Experimental
Approach

01
Survey of state-of-
the-art Nearest
Neighbor Search
algorithms

02
Similarity Search on
the GPU, in external
memory, and in
distributed settings

03

43

References

• [Amsaleg, Chelly, Furon, Girard, Houle, Kawarabayashi, Nett, 2015]: Estimating local intrinsic dimensionality. KDD 2015.

• [A., Bernhardsson, Faithfull, 2020]: ANN-Benchmarks: A benchmarking tool for approximate nearest neighbor algorithms. Inf. Syst. 87 (2020), see
https://arxiv.org/abs/1807.05614 for an open access version.

• [A., Ceccarello, 2019]: The role of local intrinsic dimensionality in benchmarking nearest neighbor search. In: SISAP 2019, see http://ann-benchmarks.com/sisap19/.

• [A., Christiani, Pagh, Vesterli, 2019]: PUFFINN: parameterless and universally fast finding of nearest neighbors. In: ESA 2019, see https://github.com/puffinn/puffinn

• [Christiani, 2019]: Fast locality-sensitive hashing frameworks for approximate near neighbor search

• [Fier, Augsten, Bouros, Leser, Freytag, 2018]: Set similarity joins on MapReduce: An experimental survey. VLDB 2018.

• [Groh, Ruppert, Wieschollek, Lensch, 2019]: GGNN: Graph-based GPU nearest neighbor search https://arxiv.org/abs/1912.01059

• [Houle, 2013]: Dimensionality, discriminability, density and distance distributions. ICDMW 2013.

• [Hu, Yi, Tao, 2019]: Output-optimal massively parallel algorithms for similarity joins. ACM Transactions on Database Systems, 2019.

• [Iwasaki, Miyazaki, 2018]: Optimization of Indexing Based on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data, https://arxiv.org/abs/1810.07355

• [Indyk, Motwani, 1998]: Approximate Nearest Neighbors: Towards removing the curse of dimensionality, STOC 1998.

• [Johnson, Douze, Jegou, 2017]: Billion-scale similarity search with GPUs, https://arxiv.org/abs/1702.08734.

• [Malkov, Yashunin, 2020]: Efficient and robust approximate nearest neighbor search using hierarchical navigable small world graphs. IEEE TPAM 2020.

• [Mann, Augsten, Bouros, 2016]: An empirical evaluation of set similarity join techniques. VLDB 2016.

• [McSherry, Isard, Murray, 2015], Scalability! But at what COST? USENIX HotOS 2015.

• [Subramanya, Devvrit, Kadekodi, Krishnaswamy, Simhadri, 2019]: DiskANN: Fast accurate billion-point nearest neighbor search on a single node. NeurIPS 2019

44

http://ann-benchmarks.com/sisap19/
https://github.com/puffinn/puffinn
https://arxiv.org/abs/1912.01059
https://arxiv.org/abs/1810.07355
https://arxiv.org/abs/1702.08734

Extra slides

45

PUFFINN: Fast Hash Function Evaluation

• Main Bottleneck: Computation of Hash Values

• Adapt the “pooling” technique of [Dahlgaard et al., 2017]

and [Christiani, 2019]

𝑚

𝐾

Pick 𝐾 hash functions in repetition 𝑗 using universal hash
functions in each column.

𝐾 ⋅ 𝑚 independent hash functions from LSH family, 𝑚 ≪ 𝐿.

Analysis using Cantelli’s inequality →
Requires different stopping criteria (factor 2 slowdown)

46

