
ANN-Benchmarks: A Benchmarking Tool
for Approximate Nearest Neighbor Algorithms?

Martin Aumüller1, Erik Bernhardsson2, and Alexander Faithfull1

1 IT University of Copenhagen, Denmark, {maau,alef}@itu.dk
2 Better, mail@erikbern.com

Abstract. This paper describes ANN-Benchmarks, a tool for evaluating
the performance of in-memory approximate nearest neighbor algorithms.
It provides a standard interface for measuring the performance and quality
achieved by nearest neighbor algorithms on different standard data sets.
It supports several different ways of integrating k-NN algorithms, and its
configuration system automatically tests a range of parameter settings for
each algorithm. Algorithms are compared with respect to many different
(approximate) quality measures, and adding more is easy and fast; the
included plotting front-ends can visualise these as images, LATEX plots,
and websites with interactive plots. ANN-Benchmarks aims to provide
an constantly updated overview of the current state of the art of k-NN
algorithms. In the short term, this overview allows users to choose the
correct k-NN algorithm and parameters for their similarity search task; in
the longer term, algorithm designers will be able to use this overview to test
and refine automatic parameter tuning. The paper gives an overview of the
system, evaluates the results of the benchmark, and points out directions
for future work. Interestingly, very different approaches to k-NN search
yield comparable quality-performance trade-offs. The system is available
at http://sss.projects.itu.dk/ann-benchmarks/.

1 Introduction

Nearest neighbor search is one of the most fundamental tools in many areas of
computer science, such as image recognition, machine learning, and computational
linguistics. For example, one can use nearest neighbor search on image descriptors
such as MNIST [18] to recognize handwritten digits, or one can find semantically
similar phrases to a given phrase by applying the word2vec embedding [22] and
finding nearest neighbors. The latter can, for example, be used to tag articles on
a news website and recommend new articles to readers that have shown an interest
in a certain topic. In some cases, a generic nearest neighbor search under a suitable
distance or measure of similarity offers surprising quality improvements [8].

In many applications, the data points are described by high-dimensional vectors,
usually ranging from 100 to 1000 dimensions. A phenomenon called the curse of

? The research of the first and third authors has received funding from the Euro-
pean Research Council under the European Union’s 7th Framework Programme
(FP7/2007-2013) / ERC grant agreement no. 614331.

http://sss.projects.itu.dk/ann-benchmarks/

dimensionality, the existence of which is also supported by popular algorithmic hard-
ness conjectures (see [2,28]), tells us that to obtain the true nearest neighbors, we
have to use either linear time (in the size of the dataset) or time/space that is expo-
nential in the dimensionality of the dataset. In the case of massive high-dimensional
datasets, this rules out efficient and exact nearest neighbor search algorithms.

To obtain efficient algorithms, research has focused on allowing the returned
neighbors to be an approximation of the true nearest neighbors. As an example,
in the case of searching for the nearest neighbor p∗ of a query point q, we require
for the algorithm to be correct that it returns a point that is at most a factor of
1+ε further away from q than p∗.

There exist many different algorithmic techniques for finding approximate
nearest neighbors. Classical algorithms such as kd-trees [5] or M-trees [9] can
simulate this by terminating the search early, for example shown by Zezula et al.
[29] for M-trees. Other techniques [20,21] build a graph from the dataset, where
each vertex is associated with a data point, and a vertex is adjacent to its true
nearest neighbors in the data set. Others involve projecting data points into a
lower-dimensional space using hashing. A lot of research has been conducted with
respect to locality-sensitive hashing (LSH) [15], but there exist many other tech-
niques that rely on hashing for finding nearest neighbors; see [27] for a survey on the
topic. We note that, in the realm of LSH-based techniques, algorithms guarantee
sublinear query time, but solve a problem that is only distantly related to finding
the k nearest neighbors of a query point. In practice, this could mean that the
algorithm runs slower than a linear scan through the data, and counter-measures
have to be taken to avoid this behavior [1,25].

Given the difficulty of the problem of finding nearest neighbors in high-
dimensional spaces and the wide range of different solutions at hand, it is natural to
ask how these algorithms perform in empirical settings. Fortunately, many of these
techniques already have good implementations: see, e.g., [23,6,19] for tree-based,
[7,11] for graph-based, and [3] for LSH-based solutions. This means that a new
(variant of an existing) algorithm can show its worth by comparing itself to the many
previous algorithms on a collection of standard benchmark datasets with respect to
a collection of quality measures. What often happens, however, is that the evalua-
tion of a new algorithm is based on a small set of competing algorithms and a small
number of select datasets. This approach poses problems for everyone involved:

(i) The algorithm’s authors, because competing implementations might be un-
available, they might use other conventions for input data and output of results,
or the original paper might omit certain required parameter settings (and, even
if these are available, exhaustive experimentation can take lots of CPU time).

(ii) Their reviewers and readers, because experimental results are difficult to repro-
duce and the selection of datasets and quality measures might appear selective.

This paper proposes a way of standardizing benchmarking for nearest neighbor
search algorithms, taking into account their properties and quality measures. Our
benchmarking framework provides a unified approach to experimentation and
comparison with existing work. The framework has already been used for experi-
mental comparison in other papers [20] (to refer to parameter choice of algorithms)

2

and algorithms have been contributed by the community, e.g., by the authors of
NMSLib [7] and FALCONN [3]. An earlier version of our framework is already
widely used as a benchmark referred to from other websites, see, e.g., [7,3,6,19,11].

Related work. Generating reproducible experimental results is one of the greatest
challenges in many areas of computer science, in particular in the machine learning
community. As an example, openml.org [26] and codalab.org provide researchers
with excellent platforms to share reproducible research results.

The automatic benchmarking system developed in connection with the mlpack
machine learning library [10,13] shares many characteristics with our framework:
it automates the processs of running algorithms with preset parameters on certain
datasets, and can visualize these results. However, the underlying approach is
very different: it calls the algorithms natively and parses the standard output
of the algorithm for result metrics. Consequently, the system relies solely on the
correctness of the algorithms’ own implementations of quality measures, and adding
new quality measures needs changes in every single algorithm implementation. We
instead require algorithms to expose a simple programmatic interface, which is only
required to return the set of nearest neighbors of a given query, after preprocessing
the set of data points. Timing and quality measure computation is conducted within
our framework. This lets us add new metrics without rerunning the algorithms,
if the metric can be computed from the set of returned elements.

Our benchmarking framework does not aim to replace these tools; instead, it
complements them.

Contributions. We describe our system for benchmarking approximate nearest
neighbor algorithms with the general approach described in Section 3. The system
allows for easy experimentation with k-NN algorithms, and visualizes algorithm
runs in an approachable way. Moreover, in Section 4 we use our benchmark suite to
overview the performance and quality of current state-of-the-art k-NN algorithms.
This allows us to identify areas that already have competitive algorithms, to compare
different methodological approaches to nearest neighbor search, but also to point out
challenging datasets and metrics, where good implementations are missing or do not
take full advantage of properties of the underlying metric. Having this overview has
immediate practical benefits, as users can select the right combination of algorithm
and parameters for their application. In the longer term, we expect that more
algorithms will become able to tune their own parameters according to the user’s
needs, and our benchmark suite will also serve as a testbed for this automatic tuning.

2 Problem Definition and Quality Measures

We assume that we want to find near neighbors in a space X with a distance
measure dist : X ×X → R, for example the d-dimensional Euclidean space Rd

under Euclidean distance (l2 norm), or d-dimensional Hamming space {0,1}d under
Hamming distance.

An algorithm A for nearest neighbor search builds a data structure DSA for
a data set S⊂X of n points. In a preprocessing phase, it creates DSA to support

3

openml.org
codalab.org

the following type of queries: For a query point q ∈X and an integer k, return
a result tuple π = (p1, ... ,pk′) of k′ ≤ k distinct points from S that are “close”
to the query q. Nearest neighbor search algorithms generate π by refining a set
C⊆S of candidate points w.r.t. q by choosing the k closest points among those
doing distance computations. The size of C (and thus the number of distance
computations) is denoted by N . We let π∗=(p∗1,...,p

∗
k) denote the tuple containing

the true k nearest neighbors for q in S (where ties are broken arbitrarily). We
assume in the following that all tuples are sorted according to their distance to q.

2.1 Quality Measures

We use different notions of “recall” as a measure of the quality of the result returned
by the algorithm. Intuitively, recall is the ratio of the number of points in the result
tuple being true nearest neighbors and the number k of true nearest neighbors.
However, this intuitive definition is fragile when distances are not distinct or when
we try to add a notion of approximation to it. To avoid these issues, we use the
following distance-based definitions of recall and (1+ε)-approximative recall, that
take the distance of the k-th true nearest neighbor as threshold distance.

recall(π,π∗)=
|{p contained in π |dist(p,q)≤dist(p∗k,q)}|

k

recallε(π,π
∗)=
|{p contained in π |dist(p,q)≤(1+ε)dist(p∗k,q)}|

k
, for ε>0.

(If all distances are distinct, recall(π,π∗) matches the intuitive notion of recall.)
We note that (approximate) recall in high dimensions is sometimes criticised;

see, for example, [7, Section 2.1]. We investigate the impact of approximation as
part of the evaluation in Section 4, and plan to include other quality measures such
as position-related measures [29] in future work.

2.2 Performance Measures

With regard to the performance, we use the performance measures defined in Table 1,
which are divided into measures of the performance of the preprocessing step, i.e.,
generation of the data structure, and measures of the performance of the query algo-
rithm. With respect to the query performance, different communities are interested
in different cost values. Some rely on actual timings of query times, where others rely
on the number of distance computations (reflected in the accuracy of the algorithm).
The framework can take both of these measures into account. However, none of
the currently included algorithms report the number of distance computations.

Name of Measure Computation of Measure

Index size of DS Size of DS after preprocessing finished (in kB)
Index build time DS Time it took to build DS (in seconds)

Accuracy of a query N/n
Time of a query Time it took to run the query and generate result tuple π

Table 1. Performance measures used in the framework.

4

3 System Design

ANN-Benchmarks is implemented as a Python library with several different front-
ends: one script for running experiments and a handful of others for working
with and plotting results. It is designed to be run in a virtual machine or Docker
container, and so comes with shell scripts for automatically installing algorithms,
dependencies, and datasets.

The experiment front-end has some parameters of its own that influence what
algorithms will be tested: the dataset to be searched (and an optional dataset of
query points), the number of neighbours to search for, and the distance algorithm
to be used to compare points. The plotting front-ends are also aware of these
parameters, which are used to select and label plots.

This section gives only a high-level overview of the system; see http://sss.

projects.itu.dk/ann-benchmarks/ for more detailed technical information.

3.1 Installing algorithms and datasets

Each dataset and library has a shell script that downloads, builds and installs it.
These scripts are built on top of a shell function library that defines a few common
operations, like cloning and patching a Git repository or downloading a dataset
and checking its integrity. Datasets may also need to be converted; we include
Python scripts for converting a few commonly-used formats into the plain-text
format used by our system, and the shell scripts make use of these.

The shell function library used to install algorithm libraries can also automat-
ically apply a patch series, so we can carry patches in our repository that make
algorithms available to the framework before later moving them upstream.

Adding support for a new algorithm to ANN-Benchmarks is as easy as writing
a script to install it and its dependencies, making it available to Python by writing
a wrapper (or by reusing an existing one), and adding the parameters to be tested
to the configuration files. Most of the installation scripts fetch the latest version
of their algorithm from its Git repository, but there is no requirement to do this;
indeed, installing several different versions of an algorithm would make it possible
to use the framework for regression testing.

Algorithm wrappers. To be usable by our system, each of the algorithms to be
tested must have some kind of Python interface. Many libraries already provide
their own Python wrappers, either written by hand or automatically generated
using a tool like SWIG; others are implemented partly or entirely in Python.

To bring algorithms that do not provide a Python interface into the framework,
we specify a simple text-based protocol that supports the few operations we care
about: parameter configuration, sending training data, and running queries. The
framework comes with a wrapper that communicates with external programs using
this protocol. In this way, algorithms can be run in external front-end processes
implemented in any programming language.

The protocol has been designed to be easy to implement. Every message is a
line of text that will be split into tokens according to the rules of the POSIX shell,
good implementations of which are available for most programming languages. The

5

http://sss.projects.itu.dk/ann-benchmarks/
http://sss.projects.itu.dk/ann-benchmarks/

protocol is flexible and extensible: front-ends are free to include extra information
in replies, and they can also implement special configuration options that cause
them to diverge from the protocol’s basic behaviour. As an example, we provide a
simple C implementation that supports an alternative query mode in which parsing
and preparing a query data point and running a query are two different commands.
(As the overhead of parsing a string representation of a data point is introduced
by the use of the protocol, removing it makes the timings more representative of
normal use of the algorithm.)

3.2 Loading datasets and computing ground truth

Once we have datasets available, we must load them and compute the ground truth
for the query set: the true nearest neighbours for each query point, along with their
distances. This ground truth is passed, along with the values obtained by each
experiment, to the functions used by the plotting scripts to calculate the various
quality metrics.

The query set for a dataset is, by default, a pseudorandomly-selected set of ten
thousand entries separated from the rest of the training data. If this behavior is
not wanted, datasets can declare a different number of queries in their metadata,
or the user can provide an explicit query set instead.

Depending on the values of the system’s own configuration parameters, many dif-
ferent sets may have to be computed. Each of these is stored in a separate cache file.

3.3 Creating algorithm instances

After loading the dataset, the framework moves on to creating the algorithm
instances. It does so based on a YAML configuration file that specifies a hierarchy
of dictionaries: the first level specifies the point type, the second the distance metric,
and the third each algorithm to be tested. Each algorithm gives the name of its wrap-
per’s Python constructor; a number of other entries are then expanded to give the
arguments to that constructor. Figure 1 shows an example of this configuration file.

The base-args list consists of those arguments that should be prepended to
every invocation of the constructor. Figure 1 also shows one of the special keywords,
"@metric", that is used to pass one of the framework’s configuration parameters
to the constructor.

float:

any:

annoy:

constructor: Annoy

base -args: [" @metric "]

run -groups:

one -or-two -hundred -trees:

args: [[100, 200], [100, 200, 400, 1000]]

four -hundred -trees:

args: [400, [1000, 2000, 4000, 10000]]

Fig. 1. An example of a fragment of an algorithm configuration file.

6

Algorithms must specify one or more “run groups“, each of which will be
expanded into one or more lists of constructor arguments. The args entry com-
pletes the argument list, but not directly: instead, the Cartesian product of all
of its entries is used to generate many lists of arguments. The annoy entry in in
Figure 1, for example, expands into twelve different algorithm instances, from
Annoy("euclidean", 100, 100) to Annoy("euclidean", 400, 10000).

3.4 The experiment loop

Once the framework knows what algorithms to run, it moves on to the experiment
loop. (Figure 2 gives an overview of the loop.) Each algorithm instance is run in a
separate subprocess. This makes it easy to clean up properly after each algorithm
– simply destroying the subprocess takes care of everything. This approach also
gives us a simple and algorithm-agnostic way of computing the memory usage of
an algorithm: the subprocess takes a snapshot of its memory consumption before
and after initialising the algorithm’s data structures and compares the difference.

The complete results of each run are sent back to the main process using a pipe.
The main process performs a blocking, timed wait on the other end of the pipe,
and will destroy the subprocess if the user-configurable timeout is exceeded before
any results are available.

3.5 Results and metrics

The fact that we store the complete results of each run – the time taken for each
query and the indices and distances of each candidate – makes it easy to add new
metrics and minimises wasted computation.

For each run, we store the full name – including the parameters – of the algorithm
instance, the time it took to evaluate the training data, and the near neighbours
returned by the algorithm, along with their distance from the query point. (To
avoid affecting the timing of algorithms that do not indicate the distance of a result,
the experiment loop independently re-computes distance values after the run is

{

ANN-Benchmarks

Algorithm

train(X)

Preprocessing Phase Query Phase

query(q, k) [p1,…,pk] {“candidates”: 245,
… }

getAdditional()

Queries left?

time

Yes
No

Measure query time

{

Measure index
build time/size

Fig. 2. Overview of the interaction between ANN-Benchmarks and an algorithm
under test. The algorithm builds an index data structure for the dataset X in the
preprocessing phase. During the query phase, it returns k near neighbors for each
query point; after answering a query, it can also report any extra information it
might have, such as the size of the candidate set.

7

Fig. 3. Interactive plot screen from framework’s website (cropped). Plot shows
“Queries per second” (y-axis, log-scaled) against “Recall” (x-axis, not shown).
Highlighted data point corresponds to a run of Annoy with parameters as depicted,
giving about 1249 queries per second for a recall of about 0.52.

Principle Algorithms

k-NN graph KGraph [11], SWGraph [21,7], HNSW [20,7]
tree-based FLANN [23], BallTree [7]
LSH FALCONN [3], MPLSH [12,7], FAISS [16] (+PQ codes)
random-projection forest Annoy [6], RPForest [19]
other DOLPHINN [4] (Projections + Hypercube)

Multi-Index Hashing (MIH) [24] (exact Hamming search)
Table 2. Overview of tested algorithms. Implementations in italics have “recall”
as quality measure provided as an input parameter.

otherwise finished.) Each run is stored in a separate file in a directory hierarchy
that encodes the framework’s configuration. Keeping runs in separate files makes
them easy to compress, easy to enumerate, and easy to re-run, and individual
results – or sets of results – can easily be shared to make results more transparent.

Metric functions are passed the ground truth and the results for a particular
run; they can then compute their result however they see fit. Addding a new quality
metric is a matter of writing a short Python function and adding it to an internal
data structure; the plotting scripts query this data structure and will automatically
support the new metric.

3.6 Frontend

ANN-Benchmarks provides two options to evaluate the results of the experiments: a
script to generate individual plots using Python’s matplotlib and a script to generate
a website that summarizes the results and provides interactive plots with the option
to export the plot as LATEX code using pgfplots. See Figure 3 to see a small example.
Plots depict the Pareto frontier over all runs of an algorithm; this gives an immediate
impression of the algorithm’s general characteristics, at the cost of concealing some
of the detail. When more detail is desired, the scripts can also produce scatter plots.

4 Evaluation

In this section we present a short evaluation of our findings from running bench-
marks in the benchmarking framework.
Experimental setup. All experiments were run in Docker containers on Amazon
EC2 c4.2xlarge instances that are equipped with Intel Xeon E5-2666v3 processors

8

Dataset Data/Query Points Dimensionality Metric

SIFT 1 000 000 / 10 000 128 Euclidean
GLOVE 1 183 514 / 10 000 100 Angular
NYTimes 234 791 / 10 000 256 Euclidean
Rand-Angular 1 000 000 / 1 000 128 Angular
SIFT-Hamming 1 000 000 / 10 000 256 Hamming
NYTimes-Hamming 234 791 / 10 000 128 Hamming

Table 3. Datasets under consideration

(4 cores available, 2.90 GHz, 25.6MB Cache) and 15 GB of RAM running Amazon
Linux. We ran a single experiment multiple times to verify that performance was
reliable, and compared the experiments results with a 4-core Intel Core i7-4790
clocked at 3.6 GHz with 32GB RAM. While the latter was a little faster, the relative
order of algorithms remained stable. For each parameter setting and dataset, the
algorithm was given thirty minutes to build the index and answer the queries.
Tested Algorithms. Table 2 summarizes the algorithms that are at the mo-
ment included in our framework. More thorough descriptions of the algorithms
can be found in the references provided. The scripts that set up the framework
automatically fetch the most current version found in each algorithm’s repository.
Datasets. The datasets used in this evaluation are summarized in Table 3. Results
for other datasets are found on the framework’s website. The NYTimes dataset
was generated by building tf-idf descriptors from the bag-of-words version, and
embedding them into a lower dimensional space using the Johnson-Lindenstrauss
Transform [17]. Hamming space versions have been generated by applying Spherical
Hashing [14] using the implementation provided by the authors of [14]. The random
dataset Rand-Angular is generated by choosing 500 query points at random and
putting clusters of 500 points at distance aroundα

√
2/3, whereα grows linearly from

0 to 1 with step size 1/500. Each cluster has 500 points at distance around 2α
√

2/3
added. The rest of the dataset consists of random data points, 500 of which are chosen
as the other set of query points (with closest neigbors expected to be at distance

√
2).

Parameters of Algorithms. Most algorithms do not allow the user to explicitly
specify a quality target—in fact, only three implementations from Table 2 provide
“recall” as an input parameter. We used our framework to test many parameter
settings at once. The detailed settings tested for each algorithm can be found on
the framework’s website.

4.1 Objectives of the Experiments

We used the benchmarking framework to find answers to the following questions:

(Q1) Performance. Given a dataset, a quality measure and a number k of nearest
neighbors to return, how do algorithms compare to each other with respect
to different performance measures, such as query time or index size?

(Q2) Robustness. Given an algorithm A, how is its performance and result quality
influenced by the dataset and the number of returned neighbors?

(Q3) Approximation. Given a dataset, a number k of nearest neighbors to return,
and an algorithmA, how does its performance improve when the returned neigh-
bors can be an approximation? Is the effect comparable for different algorithms?

9

(Q4) Embeddings. Equipped with a framework with many different datasets and
distance metrics, we can try interesting combinations. How do algorithms
targeting Euclidean space or cosine similarity perform in, say, Hamming space?
How does replacing the internals of an algorithm with Hamming space related
techniques improve its performance?

The following discussion is based on a combination of the plots found on the
framework’s website; see the website for more complete and up-to-date results.

4.2 Discussion

0 0.2 0.4 0.6 0.8 1

102

104

0 0.2 0.4 0.6 0.8 1
101

102

103

104

Annoy

BallTree

FAISS

FALCONN

FLANN

HNSW

RPForest

SWGraph

0 0.2 0.4 0.6 0.8 1
101

102

103

104

Recall

Q
P

S
(1

/
s)

0 0.2 0.4 0.6 0.8 1
101

102

103

104

Recall

Annoy

BallTree

FAISS

FALCONN

FLANN

HNSW

KGraph

MPLSH

SWGraph

Fig. 4. Recall-QPS (1/s) tradeoff - up and to the right is better. Top: GLOVE,
bottom: SIFT; left: 10-NN, right: 100-NN.

(Q1) Performance. Figure 4 shows the relationship between an algorithm’s
achieved recall and the number of queries it can answer per second (its QPS) on
the two datasets GLOVE (cosine similarity) and SIFT (Euclidean distance) for 10-
and 100-nearest neighbor queries.

For GLOVE, we observe that the graph-based algorithms HNSW and SWGraph,
the LSH-based FALCONN, and the “random-projection forest”-based Annoy algo-
rithm are fastest. For high recall values, HNSW is fastest, while for lower recall
values, FALCONN achieves highest QPS. We can also observe the importance of
implementation decisions: although Annoy and RPForest are both built upon the
same algorithmic idea, they have very different performance characteristics.

On SIFT, almost all algorithms except FAISS can achieve close to perfect recall.
In particular, the graph-based algorithms (along with KGraph) are fastest, followed
by Annoy. FALCONN, BallTree, and FLANN have very similar performance.

10

Very few of these algorithms can tune themselves to produce a particular recall
value. In particular, the fastest algorithms on the GLOVE dataset expose many pa-
rameters, leaving the user to find the combination that works best. The KGraph algo-
rithm, on the other hand, uses only a single parameter, which—even in its “smallest”
choice—still guarantees recall at least 0.9 on SIFT. FLANN manages to tune itself for
a particular recall value on the SIFT dataset; forGLOVEwith high recall values, how-
ever, the tuning does not complete within the time limit, especially with 100-NN.

0 0.2 0.4 0.6 0.8 1

100

102

104

Recall

In
d
ex

si
ze

/
Q

P
S

0 0.2 0.4 0.6 0.8 1
101

103

105

Recall

Annoy

BallTree

FAISS

FALCONN

FLANN

HNSW

SWGraph

Fig. 5. Recall-Index size (kB)/QPS (s) tradeoff - down and to the right is better.
Left: SIFT (k=100), right: GLOVE (k=10).

Figure 5 relates an algorithm’s performance to its index size. High recall can
be achieved with small indexes by probing many points; however, this probing is
expensive, and so the QPS drops dramatically. To reflect this performance cost,
we scale the size of the index by the QPS it achieves. This reveals that, on SIFT,
SWGraph and FLANN achieve good recall values with small indexes. Both BallTree

and HNSW show a similar behavior to each other. Annoy and FALCONN need rather
large indexes to achieve high QPS. The picture is very different on GLOVE, where
FALCONN provides the best ratio up to recall 0.8, only losing to the graph-based
approaches at higher recall values.

(Q2) Robustness. Figure 6 plots recall against QPS for Annoy, FALCONN, and
HNSW with fixed parameters over a range of datasets. Each algorithm has a distinct
performance curve. In particular, FALCONN has very fast query times for low recall
values; the other two algorithms appear to have some base cost associated with
each query that prevents this behavior. Although all algorithms take a performance
hit for high recall values, HNSW (when it has time to complete its preprocessing)
is the least affected. All algorithms show a sharp transition for the random dataset;
this is to be expected based on the dataset’s composition (cf. Datasets above).

(Q3) Approximation. Figure 7 relates achieved QPS to the (approximate) recall
of an algorithm. The plots show results on the NYTimes dataset for recall with no
approximation and approximation factors of 1.01 and 1.1. The dataset is notoriously
difficult; with no approximation, only a handful of algorithms can achieve a recall
above 0.98. However, we know the candidate sets of most algorithms are very close
to the true nearest neighbors, as even a very small approximation factor of 1.01
improves the situation drastically: all algorithms (except FAISS) get more than 0.9
recall. Allowing for an approximation of 1.1 yields very high performance for most

11

0 0.5 1
101

102

103

Recall

Q
P

S
(1

/
s)

0 0.5 1

102

104

Recall

0 0.5 1

103

Recall

GLOVE

GLOVE (k = 100)

NYTimes

Rand-Angular

SIFT

Fig. 6. Recall-QPS (1/s) tradeoff - up and to the right is better, 10-nearest
neighbors, left: Annoy, middle: FALCONN, right: HNSW.

0 0.5 1

101

103

105

Recall

Q
P

S
(1

/
s)

0 0.5 1

Recall

0 0.5 1

Recall

Annoy

BallTree

Dolphinn

FAISS

FALCONN

HNSW

KGraph

MPLSH

SWGraph

Fig. 7. (Approximate) Recall-QPS (1/s) tradeoff - up and to the right is better,
nytimes dataset; left: ε=0, middle: ε=0.01, right: ε=0.1

algorithms, although some benefit more than others: FALCONN, for example, now
always outperforms HNSW, while Annoy suddenly leaps ahead of its competitors.

0 0.2 0.4 0.6 0.8 1

102

103

104

Recall

Q
P

S
(1

/
s)

0 0.2 0.4 0.6 0.8 1
101

102

103

104

Recall

HNSW (Euclidean)

Annoy

annoy-hamming

FALCONN

HNSW

SWGraph

MIH

Fig. 8. Recall-QPS (1/s) tradeoff - up and to the right is better, 10-nearest
neighbors, left: SIFT-Hamming, right: NYTimes-Hamming.

12

(Q4) Embeddings. Figure 8 shows a comparison between selected algorithms on
the binary versions of SIFT and NYTimes. The performance plot for HNSW in the
original Euclidean-space version is also shown. On SIFT, algorithms perform very
similarly to the original Euclidean-space version (see Figure 4), which indicates
that the queries are as difficult to answer in the embedded space as they are in the
original space. The behavior is very different on NYTimes, where all algorithms
improve their speed and quality. The only dedicated Hamming space algorithm
shown here, exact multi-index hashing, shows good performance at around 180
QPS on SIFT and 400 QPS on NYTimes.

As an experiment, we created a Hamming space-aware version of Annoy, using
the popcount intrinsic for distance computations, and sampling single bits (as in
Bitsampling LSH [15]) instead of choosing hyperplanes as in random projection
forests. This version is an order of magnitude faster on NYTimes; on SIFT, the
running times converge for high recall values.

The embedding into Hamming space does have some consistent benefits that we
do not show here. Hamming space-aware algorithms should always have smaller in-
dex sizes, for example, due to the compactness of bit vectors stored as binary strings.

5 Conclusion & Further Work

We introduced ANN-Benchmarks, an automated benchmarking system for approxi-
mate nearest neighbor algorithms. We described the system and used it to evaluate
existing algorithms. Our evaluation showed that well-enginereed solutions for
Euclidean and Cosine distance exist, and many techniques allow for fast nearest
neighbor search algorithms. At the moment, graph-based approaches such as HNSW
or KGraph outperform the other approaches for very high recalls, whereas LSH-
based solutions such as FALCONN yield very high performance at lower recall values.
Index building for graph-based approaches takes a long time for datasets with dif-
ficult queries. We did not find solutions targeting Hamming space under Hamming
distance, but showed that substituting Hamming space-specific techniques into
more general algorithms can greatly improve their running time.

In future, we aim to add support for other metrics and quality measures, such
as positional errors [29]. Preliminary support exists for set similarity under Jaccard
distance, but algorithm implementations are missing. Testing Hamming space-
aware versions of the graph-based methods and FALCONN could also be instructive,
as could benchmarking GPU-powered nearest neighbor algorithms, one of which is
already included in FAISS [16]. We also intend to simplify and further automate the
process of re-running benchmarks when new versions of certain algorithms appear.

References

1. Ahle, T.D., Aumüller, M., Pagh, R.: Parameter-free locality sensitive hashing for
spherical range reporting. In: SODA’17. pp. 239–256

2. Alman, J., Williams, R.: Probabilistic polynomials and hamming nearest neighbors.
In: FOCS’15. pp. 136–150

3. Andoni, A., Indyk, P., Laarhoven, T., Razenshteyn, I.P., Schmidt, L.: Prac-
tical and optimal LSH for angular distance. In: NIPS’15. pp. 1225–1233.
https://falconn-lib.org/

13

https://falconn-lib.org/

4. Avarikioti, G., Emiris, I.Z., Psarros, I., Samaras, G.: Practical linear-space
approximate near neighbors in high dimension. CoRR abs/1612.07405 (2016)

5. Bentley, J.L.: Multidimensional binary search trees used for associative searching.
Commun. ACM 18(9), 509–517 (1975)

6. Bernhardsson, E.: Annoy, https://github.com/spotify/annoy
7. Boytsov, L., Naidan, B.: Engineering efficient and effective non-metric space library.

In: SISAP’13. pp. 280–293
8. Boytsov, L., Novak, D., Malkov, Y., Nyberg, E.: Off the beaten path: Let’s replace

term-based retrieval with k-nn search. In: CIKM’16. pp. 1099–1108
9. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity

search in metric spaces. In: VLDB’97. pp. 426–435 (1997)
10. Curtin, R.R., Cline, J.R., Slagle, N.P., March, W.B., Ram, P., Mehta, N.A., Gray,

A.G.: MLPACK: A scalable C++ machine learning library. Journal of Machine
Learning Research 14, 801–805 (2013)

11. Dong, W.: KGraph, https://github.com/aaalgo/kgraph
12. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling LSH for perfor-

mance tuning. In: CIKM’08. pp. 669–678. ACM, http://lshkit.sourceforge.net/
13. Edel, M., Soni, A., Curtin, R.R.: An automatic benchmarking system. In: NIPS 2014

Workshop on Software Engineering for Machine Learning (2014)
14. Heo, J.P., Lee, Y., He, J., Chang, S.F., Yoon, S.E.: Spherical hashing: Binary code

embedding with hyperspheres. IEEE TPAMI 37(11), 2304–2316 (2015)
15. Indyk, P., Motwani, R.: Approximate nearest neighbors: Towards removing the curse

of dimensionality. In: STOC’98. pp. 604–613
16. Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with gpus. CoRR

abs/1702.08734 (2017)
17. Johnson, W.B., Lindenstrauss, J., Schechtman, G.: Extensions of lipschitz maps

into banach spaces. Israel Journal of Mathematics 54(2), 129–138 (1986)
18. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to

document recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)
19. Lyst Engineering: Rpforest, https://github.com/lyst/rpforest
20. Malkov, Y.A., Yashunin, D.A.: Efficient and robust approximate nearest neighbor

search using Hierarchical Navigable Small World graphs. ArXiv e-prints (Mar 2016)
21. Malkov, Y., Ponomarenko, A., Logvinov, A., Krylov, V.: Approximate nearest

neighbor algorithm based on navigable small world graphs. Inf. Syst. 45, 61–68 (2014)
22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed represen-

tations of words and phrases and their compositionality. In: NIPS’13. pp. 3111–3119
23. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm

configuration. In: VISSAPP’09. pp. 331–340. INSTICC Press
24. Norouzi, M., Punjani, A., Fleet, D.J.: Fast search in hamming space with multi-index

hashing. In: CVPR’12. pp. 3108–3115. IEEE
25. Pham, N.: Hybrid LSH: faster near neighbors reporting in high-dimensional space.

In: EDBT’17. pp. 454–457
26. Van Rijn, J.N., Bischl, B., Torgo, L., Gao, B., Umaashankar, V., Fischer, S., Winter,

P., Wiswedel, B., Berthold, M.R., Vanschoren, J.: Openml: A collaborative science
platform. In: ECML PKDD. pp. 645–649. Springer (2013)

27. Wang, J., Shen, H.T., Song, J., Ji, J.: Hashing for similarity search: A survey. CoRR
abs/1408.2927 (2014), http://arxiv.org/abs/1408.2927

28. Williams, R.: A new algorithm for optimal 2-constraint satisfaction and its
implications. Theor. Comput. Sci. 348(2-3), 357–365 (2005)

29. Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate similarity retrieval with
M-Trees. VLDB J. 7(4), 275–293 (1998)

14

https://github.com/spotify/annoy
https://github.com/aaalgo/kgraph
http://lshkit.sourceforge.net/
https://github.com/lyst/rpforest
http://arxiv.org/abs/1408.2927

	ANN-Benchmarks: A Benchmarking Tool for Approximate Nearest Neighbor Algorithms
	Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull

