
Graph Square Roots of Small Distance from Degree One Graphs∗

Petr A. Golovach1, Paloma T. Lima2, and Charis Papadopoulos3

1Department of Informatics, University of Bergen, Norway, petr.golovach@uib.no
2Department of Computer Science, IT University of Copenhagen, Denmark, palt@itu.dk

3Department of Mathematics, University of Ioannina, Greece, charis@uoi.gr

Abstract

Given a graph class H, the task of the H-Square Root problem is to decide whether
an input graph G has a square root H from H. We are interested in the parameterized
complexity of the problem for classes H that are composed by the graphs at vertex deletion
distance at most k from graphs of maximum degree at most one, that is, we are looking
for a square root H such that there is a modulator S of size k such that H − S is the
disjoint union of isolated vertices and disjoint edges. We show that different variants of
the problems with constraints on the number of isolated vertices and edges in H − S are
FPT when parameterized by k by demonstrating algorithms with running time 22O(k) · n5.
We further show that the running time of our algorithms is asymptotically optimal and it
is unlikely that the double-exponential dependence on k could be avoided. In particular,
we prove that the VC-k Root problem, that asks whether an input graph has a square
root with vertex cover of size at most k, cannot be solved in time 22o(k) · nO(1) unless the
Exponential Time Hypothesis fails. Moreover, we point out that VC-k Root parameterized
by k does not admit a subexponential kernel unless P = NP.

1 Introduction
Squares of graphs and square roots constitute widely studied concepts in graph theory, both
from a structural perspective as well as from an algorithmic point of view. A graph G is the
square of a graph H if G can be obtained from H by the addition of an edge between any two
vertices of H that are at distance two. In this case, the graph H is called a square root of G.
It is interesting to notice that there are graphs that admit different square roots, graphs that
have a unique square root and graphs that do not have a square root at all. In 1994, Motwani
and Sudan [27] proved that the problem of determining if a given graph G has a square root is
NP-complete. This problem is known as the Square Root problem.

The intractability of Square Root has been attacked in two different ways. The first one
is by imposing some restrictions on the input graph G. In this vein, the Square Root problem
has been studied in the setting in which G belongs to a specific class of graphs [4, 12, 11, 21,
26, 25, 28].

Another way of coping with the hardness of the Square Root problem is by imposing
some additional structure on the square root H. That is, given the input graph G, the task is to
determine whether G has a square root H that belongs to a specific graph class H. This setting
is known as the H-Square Root problem and it is the focus of this work. The H-Square
Root problem has been shown to be polynomial-time solvable for specific graph classes H

∗A preliminary version of this paper appeared in the Proceedings of LATIN 2020 [13]. This work received
support from the Research Council of Norway via the project “MULTIVAL".
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[18, 21, 22, 19, 20]. To name a few among others, the problem is solved in polynomial time when
H is the class of trees [24], bipartite graphs [17], cactus graphs [12], and, more recently, when
H is the class of cactus block graphs [6], outerplanar graphs [10], and graphs of pathwidth at
most 2 [10]. It is interesting to notice that the fact that H-Square Root can be efficiently (say,
polynomially) solved for some class H does not automatically imply that H′-Square Root is
efficiently solvable for every subclass H′ of H. On the negative side, H-Square Root remains
NP-complete when H is the class of graphs of girth at least 5 [7], graphs of girth at least 4 [8], split
graphs [18], and chordal graphs [18]. The fact that all known NP-hardness constructions involve
dense graphs [7, 8, 18, 27] and dense square roots, raised the question of whether H-Square
Root is polynomial-time solvable for every sparse graph class H.

We consider this question from the Parameterized Complexity viewpoint for structural pa-
rameterizations of H (we refer to the book of Cygan et al. [5] for an introduction to the field).
More precisely, we are interested in graph classes H that are at small distance from a (sparse)
graph class for which H-Square Root can be solved in polynomial time. Within this scope,
the distance is usually measured either by the number of edge deletions, edge additions or ver-
tex deletions. This approach for the problem was first applied by Cochefert et al. in [3], who
considered H-Square Root, where H is the class of graphs that have a feedback edge set
of size at most k, that is, for graphs that can be made forests by at most k edge deletions.
They proved that H-Square Root admits a compression to a special variant of the problem
with O(k2) vertices, implying that the problem can be solved in 2O(k4) + O(n4m) time, i.e., is
fixed-parameter tractable (FPT) when parameterized by k. Herein, we study whether the same
complexity behavior occurs if we measure the distance by the number of vertex deletions instead
of edge deletions.

Towards such an approach, the most natural consideration for H-Square Root is to ask for
a square root of feedback vertex set of size at most k. The approach used by Cochefert et al. [3]
fails if H is the class of graphs that can be made forests by at most k vertex deletions and the
question of the parameterized complexity of our problem for this case is open. In this context,
we consider herein the H-Square Root problem when H is the class of graphs of bounded
vertex deletion distance to a disjoint union of isolated vertices and edges. Our main result is that
the problem is FPT when parameterized by the vertex deletion distance. Surprisingly, however,
we conclude a notable difference on the running time compared to the edge deletion case even
on such a relaxed variation: a double-exponential dependency on the vertex deletion distance is
highly unavoidable. Therefore, despite the fact that both problems are FPT, the vertex deletion
distance parameterization for the H-Square Root problem requires substantial effort. More
formally, we are interested in the following problem.

Input: A graph G and nonnegative integers p, q, k such that p+ 2q + k = |V (G)|.
Task: Decide whether there is a square root H of G such that H − S is a graph

isomorphic to pK1 + qK2, for a set S on k vertices.

Distance-k-to-(pK1 + qK2) Square Root

Note that when q = 0, the problem asks whether G has a square root with a vertex cover of
size (at most) k and we refer to the problem as VC-k Root. If p = 0, we obtain Distance-
k-to-Matching Square Root. Observe also that, given an algorithm solving Distance-
k-to-(pK1 + qK2) Square Root, then by testing all possible values of p and q such that
p+ 2q = |V (G)| − k, we can solve the Distance-k-to-Degree-One Square Root problem,
whose task is to decide whether there is a square root H such that the maximum degree of
H −S is at most one for a set S on k vertices. Note that a set of vertices X inducing a graph of
maximum degree one is known as a dissociation set and the maximum size of a dissociation set is
called the dissociation number (see, e.g., [30]). Thus, the task of Distance-k-to-Degree-One
Square Root is to find a square root H with the dissociation number at least |V (G)| − k.
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We show that Distance-k-to-(pK1 + qK2) Square Root can be solved in 22O(k) ·n5 time,
that is, the problem is FPT when parameterized by k, the size of the deletion set. We complement
this result by showing that the running time of our algorithm is asymptotically optimal in the
sense that VC-k Root, i.e., the special case of Distance-k-to-(pK1 + qK2) Square Root
when q = 0, cannot be solved in 22o(k) · nO(1) time unless Exponential Time Hypothesis (ETH )
of Impagliazzo, Paturi and Zane [14, 15] fails (see also [5] for an introduction to the algorithmic
lower bounds based on ETH). We also prove that VC-k Root does not admit a kernel of size
subexponential in k unless P = NP.

Motivated by the above results, we further investigate the complexity of the H-Square
Root problem when H is the class of graphs of bounded deletion distance to a specific graph
class. We show that the problem of testing whether a given graph has a square root of bounded
deletion distance to a clique is also FPT parameterized by the size of the deletion set.

2 Preliminaries
Graphs. All graphs considered here are finite undirected graphs without loops and multiple
edges. We refer to the textbook by Bondy and Murty [1] for any undefined graph terminology.
We denote the vertex set of G by V (G) and the edge set by E(G). We use n to denote the number
of vertices of a graph and use m for the number of edges (if this does not create confusion).
Given x ∈ V (G), we denote by NG(x) the neighborhood of x. The closed neighborhood of x,
denoted by NG[x], is defined as NG(x) ∪ {x}. For a set X ⊂ V (G), NG(X) denotes the set of
vertices in V (G) \X that have at least one neighbor in X. Analogously, NG[X] = NG(X) ∪X.
The distance between a pair of vertices u, v ∈ V (G) is the number of edges of a shortest path
between them in G. We denote by N2

G(u) the set of vertices of G that are at distance exactly
two from u, and N2

G[u] is the set of vertices at distance at most two from u. Given S ⊆ V (G),
we denote by G− S the graph obtained from G by the removal of the vertices of S. If S = {u},
we also write G− u. The subgraph induced by S is denoted by G[S], and has S as its vertex set
and {uv | u, v ∈ S and uv ∈ E(G)} as its edge set. A clique is a set K ⊆ V (G) such that G[K] is
a complete graph. An independent set is a set I ⊆ V (G) such that G[I] has no edges. A vertex
cover of G is a set S ⊆ V (G) such that V (G)\S is an independent set. A graph is bipartite if its
vertex set can be partitioned into two independent sets, say A and B, and is complete bipartite
if it is bipartite and every vertex of A is adjacent to every vertex of B. A biclique in a graph G
is a set B ⊆ V (G) such that G[B] is a complete bipartite graph. A matching in G is a set of
edges having no common endpoint. We denote by Kr the complete graph on r vertices. Given
two graphs G and G′, we denote by G+G′ the disjoint union of them. For a positive integer p,
pG denotes the disjoint union of p copies of G.

The square of a graph H is the graph G = H2 such that V (G) = V (H) and every two
distinct vertices u and v are adjacent in G if and only if they are at distance at most two in H.
If G = H2, then H is a square root of G.

Two vertices u, v are said to be true twins if NG[u] = NG[v]. A true twin class of G is a
maximal set of vertices that are pairwise true twins. Note that the set of true twin classes of G
constitutes a partition of V (G). Let T = {T1, . . . , Tr} be the partition of V (G) into true twin
classes. We define the prime-twin graph G of G as the graph with the vertex set T such that
two distinct vertices Ti and Tj of G are adjacent if and only if uv ∈ E(G) for u ∈ Ti and v ∈ Tj .

Parameterized Complexity. We refer to the recent book of [5] for an introduction to Param-
eterized Complexity. Here we only state some basic definitions that are crucial for understanding.
In a parameterized problem, each instance is supplied with an integer parameter k, that is, each
instance can be written as a pair (I, k). A parameterized problem is said to be fixed-parameter
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tractable (FPT) if it can be solved in time f(k) · |I|O(1) for some computable function f . A ker-
nelization for a parameterized problem is a polynomial time algorithm that maps each instance
(I, k) of a parameterized problem to an instance (I ′, k′) of the same problem such that (i) (I, k)
is a Yes-instance if and only if (I ′, k′) is a Yes-instance, and (ii) |I ′| + k′ is bounded by f(k)
for some computable function f . The output (I ′, k′) is called a kernel. The function f is said to
be the size of the kernel.

Integer Programming. We will use integer linear programming as a subroutine in the proof
of our main result. In particular, we translate part of our problem as an instance of the following
problem.

Input: An m× p matrix A over Z and a vector b ∈ Zm.
Task: Decide whether there is a vector x ∈ Zp such that Ax ≤ b.

p-Variable Integer Linear Programming Feasibility

Lenstra [23] and Kannan [16] showed that the above problem is FPT parameterized by p,
while Frank and Tardos [9] showed that this algorithm can be made to run also in polynomial
space. We will make use of these results, that we formally state next.

Theorem 1 ([9, 16, 23]). p-Variable Integer Linear Programming Feasibility can be
solved using O(p2.5p+o(p) · L) arithmetic operations and space polynomial in L, where L is the
number of bits in the input.

3 Distance-k-to-(pK1 + qK2) Square Root
In this section we give an FPT algorithm for the Distance-k-to-(pK1 + qK2) Square Root
problem, parameterized by k. In the remainder of this section, we use (G, p, q, k) to denote an
instance of the problem. Suppose that (G, p, q, k) is a Yes-instance and H is a square root of
G such that there is S ⊆ V (G) of size k and H − S is isomorphic to pK1 + qK2. We say that
S is a modulator, the p vertices of H − S that belong to pK1 are called S-isolated vertices and
the q edges that belong to qK2 are called S-matching edges. Slightly abusing notation, we also
use these notions when H is not necessarily a square root of G but any graph such that H − S
has maximum degree one.

3.1 Structural lemmas

We start by defining the following two equivalence relations on the set of ordered pairs of
vertices of G. Two pairs of adjacent vertices (x, y) and (z, w) are called matched twins, denoted
by (x, y) ∼mt (z, w), if the following conditions hold:

· NG[x] \ {y} = NG[z] \ {w}, and
· NG[y] \ {x} = NG[w] \ {z}.

A pair of vertices (x, y) is called comparable if NG[x] ⊆ NG[y]. Two comparable pairs of vertices
(x, y) and (z, w) are nested twins, denoted by (x, y) ∼nt (z, w), if the following conditions hold:

· NG(x) \ {y} = NG(z) \ {w}, and
· NG[y] \ {x} = NG[w] \ {z}.

Note that, even though similar, the definitions of these two relations differ in two important
points. While ∼mt is defined in terms of comparisons of closed neighborhoods of the vertices
of pairs, the relation ∼nt is defined by comparisons of both open and closed neighborhoods.
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Moreover, while ∼mt is defined over all pairs of vertices, ∼nt is defined only over comparable
pairs of vertices. Next we state and prove properties about matched and nested twins that will
be useful for us.

Lemma 1. Let (x, y) and (z, w) be two distinct pairs of adjacent vertices (resp. comparable
pairs) of G that are matched twins (resp. nested twins). Then, the following holds:

(i) {x, y} ∩ {z, w} = ∅,
(ii) xw, zy /∈ E(G),
(iii) yw ∈ E(G),
(iv) if (x, y) ∼mt (z, w) then xz ∈ E(G),
(v) if (x, y) ∼nt (z, w) then xz /∈ E(G),
(vi) G− {x, y} and G− {z, w} are isomorphic.

Proof. For (i), we show that the end-vertices of both pairs are distinct. It is not difficult to see
that (x, y) ≁mt (y, x) and (x, y) ≁nt (y, x), since x ∈ NG[x] \ {y} and x /∈ NG[y] \ {x}. Assume,
for the sake of contradiction, that the two pairs share one end-vertex.

· First, we show (i) for ∼mt. Let (x, y) ∼mt (z, w). Suppose that y = w. Then x /∈ NG[y]\{x}
but x ∈ NG[w] \ {z}, that is, NG[y] \ {x} ≠ NG[w] \ {z} contradicting (x, y) ∼mt (z, w).
Assume that y = z. Then z ∈ NG[y] \ {w} but z = y /∈ NG[x] \ {y}; a contradiction. The
cases x = z and x = w are completely symmetric to the cases considered above.

· Now we prove (i) for ∼nt. Let (x, y) ∼nt (z, w). Suppose that y = w. Then x /∈ NG[y]\{x}
but x ∈ NG[w]\{z}, that is, NG[y]\{x} ≠ NG[w]\{z}; a contradiction to (x, y) ∼nt (z, w).
Let x = z. Then y /∈ NG(x)\{y} but y ∈ NG[z]\{w}, and we get thatNG(x)\{y} ≠ NG(z)\
{w}, leading again to a contradiction. Assume that y = z. Then y = z /∈ NG[w] \ {z} but
y ∈ NG[y] \ {x} and we again obtain a contradiction. The case x = w is symmetric.

This completes the proof of (i). To show the remaining claims, observe that NG[y] \ {x} =
NG[w] \ {z} holds in both relations.

For (ii), note that if xw ∈ E(G), then x ∈ NG[w] \ {z} but x /∈ NG[y] \ {x}, a contradiction.
So xw /∈ E(G). The same follows by a symmetric argument for the edge yz.

For (iii), note that if yw /∈ E(G), then w /∈ NG[y]\{x}, but w ∈ NG[w]\{z}, a contradiction.
To show (iv), observe that if xz /∈ E(G), then x ∈ NG[x] \ {y}, while x /∈ NG[z] \ {w}, a

contradiction.
For (v), if xz ∈ E(G), then z ∈ NG(x) \ {y}, but z /∈ NG(z) \ {w}, a contradiction.
To see (vi), notice that {x, y} ∩ {z, w} = ∅ by (i). Consider α : V (G) → V (G) such that

α(x) = z, α(y) = w, α(z) = x, α(w) = y and α(v) = v for v ∈ V (G) \ {x, y, z, w}. It is
straightforward to see that α is an automorphism of G by the definition of ∼nt and ∼mt and the
properties (i) and (ii). Hence, G− {x, y} and G− {z, w} are isomorphic.

In particular, the properties above allow us to classify pairs of vertices with respect to ∼mt
and ∼nt.

Observation 1. The relations ∼mt and ∼nt are equivalence relations on pairs of vertices and
comparable pairs of vertices, respectively.

Proof. It is clear that ∼mt (resp. ∼nt) are reflexive and symmetric on pairs of vertices (resp.
comparable vertices). Let (x1, y1), (x2, y2) and (x3, y3) be pairs of vertices. If NG[x1] \ {y1} =
NG[x2] \ {y2} and NG[x2] \ {y2} = NG[x3] \ {y3}, then NG[x1] \ {y1} = NG[x3] \ {y3}. Also
if NG(x1) \ {y1} = NG(x2) \ {y2} and NG(x2) \ {y2} = NG(x3) \ {y3}, then NG(x1) \ {y1} =
NG(x3) \ {y3}. This immediately implies that ∼mt and ∼nt are transitive, as well.
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Type 2 Type 3

Figure 1: Types of edges of H − S.

Let H be a square root of a connected graph G with at least three vertices, such that H
is at distance k from pK1 + qK2, and let S be a modulator. Note that S ̸= ∅, because G
is connected and |V (G)| ≥ 3. Then an S-matching edge ab of H satisfies exactly one of the
following conditions:

1. NH(a) ∩ S = ∅ and NH(b) ∩ S ̸= ∅,
2. NH(a) ∩ S,NH(b) ∩ S ̸= ∅ and NH(a) ∩NH(b) ∩ S = ∅,
3. NH(a) ∩ S,NH(b) ∩ S ̸= ∅ and NH(a) ∩NH(b) ∩ S ̸= ∅.

We refer to them as type 1, 2 and 3 edges, respectively (see Figure 1). We use the same notation
for every graph F that has a set of vertices S such that F − S has maximum degree at most
one.

In the following three lemmas, we show the properties of the S-matching edges of types 1,
2 and 3 respectively that are crucial for our algorithm. We point out that even though some
of the properties presented may be redundant, we state them in the lemmas for clarity of the
explanations.

Lemma 2. Let H be a square root of a connected graph G with at least three vertices such that
H −S is isomorphic to pK1 + qK2 for S ⊆ V (G). If a1b1 and a2b2 are two type 1 distinct edges
such that NH(b1) ∩ S = NH(b2) ∩ S ̸= ∅, then the following holds:

(i) (a1, b1) and (a2, b2) are comparable pairs,
(ii) (a1, b1) ∼nt (a2, b2),
(iii) (a1, b1) ≁mt (a2, b2).

Proof. Let A = NH(b1) ∩ S = NH(b2) ∩ S. Since (a1, b1) is a type 1 edge, we have that
NH(a1) = {b1}. Thus, NG[a1] = A ∪ {a1, b1} ⊆ NH [b1] ⊆ NG[b1]. The same holds for (a2, b2).
Hence, the pairs are comparable and (i) is proved.

For (ii), note that since NH(b1) ∩ S = NH(b2) ∩ S = A, then NG[b1] \ {a1} = NH [A] =
NG[b2]\{a2}. Moreover, since NH(a1) = {b1} and NH(a2) = {b2}, we have that NG(a1)\{b1} =
A = NG(a2) \ {b2}. This shows that (a1, b1) ∼nt (a2, b2).

Finally, for (iii), it suffices to notice that by Lemma 1(v), we have that a1a2 /∈ E(G) and it
should be a1a2 ∈ E(G) if (a1, b1) ∼mt (a2, b2) by Lemma 1(iv).

Lemma 3. Let H be a square root of a connected graph G with at least three vertices such that
H −S is isomorphic to pK1 + qK2 for S ⊆ V (G). If a1b1 and a2b2 are two distinct type 2 edges
such that NH(a1) ∩ S = NH(a2) ∩ S and NH(b1) ∩ S = NH(b2) ∩ S, then the following holds:

(i) (a1, b1) ∼mt (a2, b2),
(ii) (a1, b1) ≁nt (a2, b2).

Proof. Let A = NH(a1) ∩ S = NH(a2) ∩ S and B = NH(b1) ∩ S = NH(b2) ∩ S. Since a1b1 and
a2b2 are type 2 edges, we have A ∩B = ∅.
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For (i), notice that NG[a1] = N2
H [a1] = {b1} ∪B ∪NH [A]. Therefore, we have that NG[a1] \

{b1} = N2
H [a1] \ {b1} = B ∪ NH [A]. By the same arguments, NG[a2] \ {b2} = B ∪ NH [A] and,

therefore, NG[a1]\{b1} = NG[a2]\{b2}. By symmetric arguments, we obtain that NG[b1]\{a1} =
NG[b2] \ {a2}, which completes the proof that (a1, b1) ∼mt (a2, b2).

To prove (ii), notice that a1a2 ∈ E(G) by Lemma 1(iv) and, therefore, (a1, b1) ≁nt (a2, b2)
by Lemma 1(v).

Lemma 4. Let H be a square root of a connected graph G with at least three vertices such that
H −S is isomorphic to pK1 + qK2 for S ⊆ V (G). If a1b1 and a2b2 are two distinct type 3 edges
such that NH(a1) ∩ S = NH(a2) ∩ S and NH(b1) ∩ S = NH(b2) ∩ S, then the following holds:

(i) (a1, b1) ≁mt (a2, b2),
(ii) (a1, b1) ≁nt (a2, b2),
(iii) a1 and a2 (resp. b1 and b2) are true twins in G.

Proof. Let A = NH(a1) ∩ S = NH(a2) ∩ S and B = NH(b1) ∩ S = NH(b2) ∩ S. Since a1b1 and
a2b2 are type 3 edges, A ∩B ̸= ∅.

For (i) and (ii), it suffices to notice that since A ∩ B ̸= ∅, then a1b2, b1a2 ∈ E(G). By
Lemma 1(ii), we conclude that (a1, b1) ≁mt (a2, b2) and (a1, b1) ≁nt (a2, b2).

For (iii), observe that NG[a1] = N2
H [a1] = NH [A] ∪ {b1} ∪ B by the definition. Since

A ∩ B ̸= ∅, we have that b1 ∈ NH [A]. Hence, NG[a1] = NH [A] ∪ B. By the same arguments,
NG[a2] = NH [A] ∪ B. Then NG[a1] = NG[a2], that is, a1 and a2 are true twins. Clearly, the
same holds for b1 and b2.

We also need the following straightforward observation about S-isolated vertices.

Observation 2. Let H be a square root of a connected graph G with at least three vertices such
that H − S is isomorphic to pK1 + qK2 for S ⊆ V (G). Then every two distinct S-isolated
vertices of H with the same neighbors in S are true twins in G.

Proof. Let u and v be two such S-isolated vertices, that is, NH(u) = NH(v) ⊆ S. Since G is
connected, NH(u) ̸= ∅ and thus, uv ∈ E(G). Moreover, since NH(u) = NH(v), N2

H [u] = N2
H [v].

Hence NG[u] = NG[v], that is, u and v are true twins in G.

The next lemma is used to construct reduction rules that allow to bound the size of equiva-
lence classes of pairs of vertices with respect to ∼nt and ∼mt.

Lemma 5. Let H be a square root of a connected graph G with at least three vertices such
that H − S is isomorphic to pK1 + qK2 for a modulator S ⊆ V (G) of size k. Let Q be an
equivalence class in the set of pairs of comparable pairs of vertices with respect to the relation
∼nt (an equivalence class in the set of pairs of adjacent vertices with respect to the relation ∼mt,
respectively). If |Q| ≥ 2k + 22k + 1, then Q contains two pairs (a1, b1) and (a2, b2) such that
a1b1 and a2b2 are S-matching edges of type 1 in H satisfying NH(b1) ∩ S = NH(b2) ∩ S ̸= ∅ (S-
matching edges of type 2 in H satisfying NH(a1)∩S = NH(a2)∩S and NH(b1)∩S = NH(b2)∩S,
respectively).

Proof. Let Q be an equivalence class of size at least 2k + 22k + 1 with respect to ∼nt or ∼mt.
By Lemma 1 (i), each vertex of G appears in at most one pair of Q. Since |S| = k, there are

at most k pairs of Q with at least one element in S. Let

Q′ = {(x, y) ∈ Q | x, y /∈ S and xy is not a S-matching edge in H}.

We now show that |Q′| ≤ k. Consider (x, y) ∈ Q′. Since xy ∈ E(G) \ E(H), there exists
w ∈ V (G) such that wx,wy ∈ E(H). Since H − S is isomorphic to pK1 + qK2, we have that
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w ∈ S. Let (x′, y′) ∈ Q′ \ {(x, y)}. By the same argument, there exists w′ ∈ S such that
w′x′, w′y′ ∈ E(H). Moreover, it cannot be the case that w = w′, since this would imply that
xy′, yx′ ∈ E(G), which by Lemma 1 (ii) is a contradiction to the fact that (x, y) ∼nt (x′, y′) or
(x, y) ∼mt (x′, y′). That is, for each pair (x, y) ∈ Q′, there is a vertex in S that is adjacent to
both elements of the pair and no vertex of S can be adjacent to the elements of more than one
pair of Q′. Since |S| ≤ k, we conclude that |Q′| ≤ k.

Since |Q| ≥ 2k+22k +1, there are at least 22k +1 S-matching edges in Q. Given that |S| ≤ k,
by the pigeonhole principle, we have that there are two pairs (a1, b1), (a2, b2) ∈ Q such that a1b1
and a2b2 are S-matched edges in H and NH(a1)∩S = NH(a2)∩S and NH(b1)∩S = NH(b2)∩S.
In particular, this implies that a1b1 and a2b2 are of the same type. It cannot be the case that
these two edges are of type 3, since by Lemma 4(i) and (ii), these two pairs would not be
equivalent with respect to ∼nt or ∼mt. We now consider the following two cases, one for each of
the mentioned equivalence relations.

Suppose that Q is an equivalence class in the set of pairs of comparable pairs of vertices with
respect to the relation ∼nt. By Lemma 3(ii), they cannot be of type 2. Hence, a1b1 and a2b2 are
of type 1. In particular, either NH(a1) ∩ S = NH(a2) ∩ S ̸= ∅ or NH(b1) ∩ S = NH(b2) ∩ S ̸= ∅.
If NH(a1) ∩ S = NH(a2) ∩ S ̸= ∅, then a1a2 ∈ E(G) contradicting Lemma 1 (v). Hence, a1b1
and a2b2 are S-matching edges of type 1 in H satisfying NH(b1) ∩ S = NH(b2) ∩ S ̸= ∅.

Let now Q be an equivalence class in the set of pairs of adjacent vertices with respect to the
relation ∼mt. By Lemma 2(iii), they cannot be of type 1. Hence, a1b1 and a2b2 are of type 2.
This concludes the proof of the lemma.

3.2 The algorithm

In this section we prove our main result. First, we consider connected graphs. For this, observe
that if a connected graph G has a square root H then H is connected as well. We will show the
following.

Theorem 2. Distance-k-to-(pK1 + qK2) Square Root can be solved in time 22O(k) · n5 on
connected graphs. Furthermore, given G and k, in time 22O(k) ·n5 one can solve the problem for
all pairs of nonnegative integers p and q such that p+ 2q = n− k.

For simplicity, in Theorem 2, we assumed that the input graph is connected but it is not
difficult to extend the result for general case.

Corollary 1. Distance-k-to-(pK1 + qK2) Square Root can be solved in 22O(k) · n5 time.

Proof. Let (G, p, q, k) be an instance of Distance-k-to-(pK1 + qK2) Square Root and let
C1, . . . , Cℓ be the components of G. If ℓ = 1, we apply Theorem 2. Assume that this is not the
case and ℓ ≥ 2. For each i ∈ {1, . . . , ℓ}, we use Theorem 2 to solve the instances (Ci, p

′, q′, k′)
such that k′ ≤ k, p′ ≤ p, q′ ≤ q and k′ + p′ + 2q′ = |V (Ci)|. Then we combine these solutions to
solve the input instance using a dynamic programming algorithm.

For h ∈ {1, . . . , ℓ}, let Gh be the subgraph of G with the components C1, . . . , Ch. Clearly,
Gh = G. For each h ∈ {1, . . . , ℓ}, every triple of nonnegative integers k′, p′, q′ such that k′ ≤ k,
p′ ≤ p, q′ ≤ q and k′ + p′ + 2q′ = |V (Gh)|, we solve the instance (Gh, p

′, q′, k′). For h = 1, this
is already done as G1 = C1. Let h ≥ 2. Then it is straightforward to observe that (Gh, p

′, q′, k′)
is a Yes-instance if and only if there are nonnegative integers k1, p1, q1 and k2, p2, q2 such that

· k1 + k2 = k′, p1 + p2 = p′, q1 + q2 = q′, and
· k1 + p1 + 2q1 = |V (Gh−1)| and k2 + p2 + 2q2 = |V (Ch)|,

for which both (Gh−1, p1, q1, k1) and (Ch, p2, q2, k2) are Yes-instances. This allows to solve
(Gh, p

′, q′, k′) in time O(n2) if we are given the solutions for (Gh−1, p1, q1, k1) and (Ch, p2, q2, k2).
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We obtain that, given the tables of solutions for the components of G, we can solve the problem
for G in time O(n5). Because such tables can be constructed in 22O(k) · n5 time by Theorem 2,
we conclude that the total running time is 22O(k) · n5.

Finally, Corollary 1 gives the following statement for the related problems.

Corollary 2. VC-k Root, Distance-k-to-Matching Square Root and Distance-k-to-
Degree-One Square Root can be solved in time 22O(k) · n5.

Hence, in the remainder of this section, we focus our attention into providing a proof of
Theorem 2. We first provide a sketch of the algorithm and the main ideas behind it. These
ideas are then formally presented and proved in Subsections 3.2.2 and 3.2.3.

3.2.1 Sketch of the proof of Theorem 2

Recall that in the Distance-k-to-(pK1 + qK2) Square Root problem we want to determine
if G has a square root H such that H − S is isomorphic to pK1 + qK2, for a modulator S ⊂
V (G) with |S| = k. Our algorithm to solve this problem on a connected graph starts with a
preprocessing step whose goal is to reduce the number of S-matching edges of type 1 and type 2
in a potential solution. We are able to do that by using the equivalence relations ∼mt and
∼nt defined in Section 3.1. More specifically, we show that if there is an equivalence class with
respect to ∼mt or ∼nt that is of size at least 2k + 22k + 2, we can safely delete two vertices of
the input graph that form a pair in that equivalence class. After exhaustive application of this
reduction rule, we are able to show that the number of S-matching edges of type 1 and type 2
in a potential solution for the obtained instance is now bounded by a function of k. As a result
of this preprocessing step, we are also able to show that if our graph is a Yes-instance to the
problem, then the number of true twin classes in it is bounded by a function of k. Therefore,
if we have too many of such classes, we can safely return No. In summary, at this point in our
algorithm we may assume have an instance (G, p, q, k) such that:

(i) V (G) can be partitioned into a small (bounded by a function of k) number of true twin
classes;

(ii) if (G, p, q, k) is a Yes-instance, a square root H of G with modulator S attesting this has
bounded number of S-matching edges of type 1 and type 2.

Note that the number of S-matching edges of type 3 and the number of S-isolated vertices
in a potential solution might be unbounded. To overcome this, we define the notion of a solution
skeleton. Informally speaking, we obtain the skeleton of a solution H by replacing the set of
S-matching edges of type 3 with the same neighborhoods in S by a single representative. We do
the same for the S-isolated vertices with the same neighborhood in S. Observe that, by (ii), the
skeleton of a potential solution to our instance has bounded size. We enumerate all potential
solution skeletons, and test whether our instance has a square root with that particular skeleton.
This last step is achieved by translating the problem into solving a linear integer program with
bounded number of variables, which by Theorem 1, can be solved in time that is FPT by the
number of variables.

A formal proof of Theorem 2 is provided in the next two subsections. In Subsection 3.2.2 we
deal with the preprocessing steps, while in Subsection 3.2.3 we provide a formal definition of a
solution skeleton and show how to solve our problem using them.
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3.2.2 Proof of Theorem 2, part I: Reducing the number of type 1 and type 2 edges

Let (G, p, q, k) be an instance of Distance-k-to-(pK1 + qK2) Square Root with G being a
connected graph. Recall that we want to determine if G has a square root H such that H −S is
isomorphic to pK1 + qK2, for a modulator S ⊂ V (G) with |S| = k, where p+ 2q + k = n. If G
has at most two vertices, then the problem is trivial. Notice also that if k = 0, then (G, p, q, k)
may be a Yes-instance only if G has at most two vertices, because G is connected. Hence, from
now on we assume that n ≥ 3 and k ≥ 1.

We exhaustively apply the following rule to reduce the number of type 1 edges in a potential
solution. For this, we consider the set A of comparable pairs of vertices of G and find its partition
into equivalence classes with respect to ∼nt. Note that A contains at most 2m elements and can
be constructed in time O(mn). Then the partition of A into equivalence classes can be found
in time O(m2n) by checking the neighborhoods of the vertices of each pair.

Rule 2.1. If there is an equivalence class Q ⊆ A with respect to ∼nt such that |Q| ≥ 2k+22k +2,
delete two vertices of G that form a pair of Q and set q := q − 1.

The following claim shows that Rule 2.1 is safe.

Claim 2.1. If G′ is the graph obtained from G by the application of Rule 2.1, then G′ is connected
and (G, p, q, k) and (G′, p, q − 1, k) are equivalent instances of Distance-k-to-(pK1 + qK2)
Square Root.

Proof: Let G′ = G− {x, y} for a pair (x, y) ∈ Q.
First assume (G, p, q, k) is a Yes-instance to Distance-k-to-(pK1 + qK2) Square Root

and let H be a square root of G that is a solution to this problem with a modulator S. By
Lemma 5, H has two S-matching edges x′y′ and x′′y′′ of type 1 such that (x′, y′), (x′′, y′′) ∈ Q
and NH(y′) ∩ S = NH(y′′) ∩ S ̸= ∅. Note that for any vertex u, if uy′ is an edge in H, then
uy′′ is also an edge in H (except when u = x′). Hence, H ′ = H − {x′, y′} is a square root of
G′′ = G − {x′, y′} with one less S-matching edge. Moreover, H ′ is connected, because H is
connected and NH(y′) \ {x′} = NH′(y′′) \ {x′′}. This implies that G′′ is connected as well. We
conclude that (G′′, p, q− 1, k) is a Yes-instance with G′′ be a connected graph. Because G′ and
G′′ are isomorphic by Lemma 1(vi), we have that (G′, p, q − 1, k) is a Yes-instance as well and
G′ is connected.

Now assume (G′, p, q − 1, k) is a Yes-instance to Distance-k-to-(pK1 + qK2) Square
Root and let H ′ be a square root of G′ that is a solution to this problem with a modulator S.
Recall that Q consists of pairs of vertices whose end-vertices are pairwise distinct by Lemma 1(i).
Hence, Q′ = Q \ {(x, y)} contains at least 2k+ 22k + 1 elements. By the definition of ∼nt, every
two pairs of Q′ = Q \ {(x, y)} are equivalent with respect to the relation for G′. Thus, by
Lemma 5, there are (x′, y′), (x′′, y′′) ∈ Q′ such that x′y′ and x′′y′′ are S-matching edges of type 1
in H ′ and NH(y′) ∩ S = NH(y′′) ∩ S ̸= ∅. We construct a square root H for G by adding the
edge xy to H ′ as an S-matching edge of type 1 with NH(y) ∩ S = NH(y′) ∩ S. To see that H is
indeed a square root for G, note that since H ′ was a square root for G′, we have H ′2 = G′. Now
we argue about the edges of G that are incident to x and y. Since (x, y), (x′, y′) ∈ Q, we have
that NG(x) \ {y} = NG(x′) \ {y′} and NG[y] \ {x} = NG[y′] \ {x′}. This means that if w ̸= x is a
neighbor of y in G, then w is also a neighbor of y′. Since H ′ is a square root of G′, we have that
either y′w ∈ E(H ′) or y′ and w are at distance two in H ′. Since NH(y) ∩ S = NH(y′) ∩ S, the
same holds for y: it is either adjacent to w or it is at distance two from w in H. A symmetric
argument holds for any edge incident to x in G. Hence, we conclude that H is indeed a square
root of G. ⌟

We also want to reduce the number of type 2 edges in a potential solution. Let B be the
set of pairs of adjacent vertices. We construct the partition of B into equivalence classes with
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respect to ∼mt. We have that |B| = 2m and, therefore, the partition of B into equivalence classes
can be found in time O(m2n) by checking the neighborhoods of the vertices of each pair. We
exhaustively apply the following rule.

Rule 2.2. If there is an equivalence class Q ⊆ B with respect to ∼mt such that |Q| ≥ 2k+22k +2,
delete two vertices of G that form a pair of Q and set q := q − 1.

The following claim shows that Rule 2.1 is safe.

Claim 2.2. If G′ is the graph obtained from G by the application of Rule 2.2, then G′ is connected
and (G, p, q, k) and (G′, p, q − 1, k) are equivalent instances of Distance-k-to-(pK1 + qK2)
Square Root.

Proof: The proof of this claim follows the same lines as the proof of Claim 2.1. LetG′ = G−{x, y}
for (x, y) ∈ Q.

Let (G, p, q, k) be a Yes-instance to Distance-k-to-(pK1 + qK2) Square Root and let H
be a square root of G that is a solution to this problem with a modulator S. By Lemma 5, H has
two S-matching edges x′y′ and x′′y′′ of type 2 such that (x′, y′), (x′′, y′′) ∈ Q and NH(x′) ∩ S =
NH(x′′) ∩ S and NH(y′) ∩ S = NH(y′′) ∩ S. Note that for any vertex u, if ux′ (resp. uy′) is an
edge in H, then ux′′ (resp. uy′′) is also an edge in H, except when u = y′ (resp. u = x′). Thus,
H ′ = H − {x′, y′} is a square root of G′′ = G− {x′, y′} with one less S-matching edge. We also
have that H ′ is connected, because H is connected. This implies that G′′ is also connected. We
conclude that (G′′, p, q− 1, k) is a Yes-instance with G′′ be a connected graph. Because G′ and
G′′ are isomorphic by Lemma 1 (vi), we have that (G′, p, q − 1, k) is a Yes-instance as well and
G′ is connected.

Now assume (G′, p, q − 1, k) is a Yes-instance to Distance-k-to-(pK1 + qK2) Square
Root and let H ′ be a square root of G′ that is a solution to this problem with a modulator S.
Recall that Q consists of pairs of vertices whose end-vertices are pairwise distinct by Lemma 1(i).
Hence, Q′ = Q \ {(x, y)} contains at least 2k+ 22k + 1 elements. By the definition of ∼mt, every
two pairs of Q′ = Q \ {(x, y)} are equivalent with respect to the relation for G′. Thus, by
Lemma 5, there are (x′, y′), (x′′, y′′) ∈ Q′ such that x′y′ and x′′y′′ are S-matching edges of type 2
in H ′ with NH(x′)∩S = NH(x′′)∩S and NH(y′)∩S = NH(y′′)∩S. We construct a square root H
for G by adding the edge xy to H ′ as a S-matching edge of type 2 with NH(x)∩S = NH(x′)∩S
and NH(y) ∩ S = NH(y′) ∩ S. To see that H is indeed a square root for G, note that since
H ′ was a square root for G′, we have H ′2 = G′. Now we argue about the edges of G that are
incident to x and y. Since (x, y), (x′, y′) ∈ Q, we have that NG[x] \ {y} = NG[x′] \ {y′} and
NG[y] \ {x} = NG[y′] \ {x′}. This means that if w ̸= x is a neighbor of y in G, then w is also
a neighbor of y′. Since H ′ is a square root of G′, we have that either y′w ∈ E(H ′) or y′ and
w are at distance two in H ′. Since NH(y) ∩ S = NH(y′) ∩ S, the same holds for y: it is either
adjacent to w in H or it is at distance two from w in H. A symmetric argument holds for any
edge incident to x in G. Hence, we conclude that H is indeed a square root of G. ⌟

After exhaustive application of Rules 2.1 and 2.2 we obtain the following bounds on the
number of S-matching edges of types 1 and 2 in a potential solution.

Claim 2.3. Let (G′, p, q′, k) be the instance of Distance-k-to-(pK1 + qK2) Square Root
after exhaustive applications of Rules 2.1 and 2.2. Then G′ is a connected graph and a potential
solution H to the instance has at most 2k(2k+ 22k + 1) S-matching edges of type 1 and 22k(2k+
22k + 1) S-matching edges of type 2.

Proof: Clearly, G′ is connected by Claims 2.1 and 2.2.
By Lemma 2(ii) and Lemma 3(ii), if two S-matching edges xy and x′y′ of a potential solution

behave in the same way with respect to S, that is, if NH(x) ∩S = NH(x′) ∩S and NH(y) ∩S =
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NH(y′)∩S, then they belong to the same equivalence class (either with respect to ∼nt or to ∼mt).
Hence, after exhaustive application of Rule 2.1, for each set A ⊆ S, there are at most 2k+22k +1
S-matching edges xy such that NH(y) ∩ S = A. Thus, there are at most 2k(2k + 22k + 1) S-
matching edges of type 1 in H. Analogously, after exhaustive application of Rule 2.1, for each
A,B ⊆ S, there are at most 2k + 22k + 1 S-matching edges xy such that NH(x) ∩ S = A and
NH(y) ∩ S = B. Hence, there are at most 22k(2k + 22k + 1) S-matching edges of type 2. ⌟

For simplicity, we call (G, p, q, k) again the instance obtained after exhaustive applications of
Rules 2.1 and 2.2. Notice that G can be constructed in polynomial time, since the equivalence
classes according to ∼mt and ∼nt can be computed in time O(m2n).

By Claim 2.3, in a potential solution, the number of S-matching edges of types 1 and 2 is
bounded by a function of k. We will make use of this fact to make further guesses about the
structure of a potential solution. To do so, we first consider the classes of true twins of G and
show the following.

Claim 2.4. Let T = {T1, . . . , Tr} be the partition of V (G) into classes of true twins. If
(G, p, q, k) is a Yes-instance to our problem, then r ≤ 2(2k + 22k)(2k+ 22k + 1) +k+ 2k + 2 · 22k.

Proof: Assume (G, p, q, k) is a Yes-instance to our problem and let H be a square root of
G containing a modulator S of size k such that H − S is isomorphic to pK1 + qK2. Let X
be the set of vertices of G that are endpoints of type 1 and type 2 S-matching edges in H.
By Claim 2.3, |X| ≤ 2(2k + 22k)(2k + 22k + 1). Note that if two S-isolated vertices of H
have the same neighborhood in S, they are true twins in G by Observation 2. Moreover, by
Lemma 4(iii), if xy and x′y′ are two type 3 S-matching edges in H satisfying NH(x) ∩ S =
NH(x′) ∩ S and NH(y) ∩ S = NH(y′) ∩ S, then x and x′ (resp. y and y′) are true twins in
G. As already explained, there are no other types of edges in H − S. Thus, we have at most
2(2k + 22k)(2k+ 22k + 1) distinct classes of true twins among the vertices of X, at most k classes
among the vertices of S, at most 2k classes among the S-isolated vertices and at most 2 · 22k

classes among the vertices that are endpoints of type 3 k-matching edges. This shows that
r ≤ 2(2k + 22k)(2k + 22k + 1) + k + 2k + 2 · 22k. ⌟

Observe that the partition T = {T1, . . . , Tr} of V (G) into classes of true twins can be
constructed in linear time [29]. Using Claim 2.4, we apply the following rule.

Rule 2.3. If |T | > 2(2k + 22k)(2k + 22k + 1) + k + 2k + 2 · 22k, then return No and stop.

From now, we assume that we do not stop by Rule 2.3. This means that |T | = O(24k).

3.2.3 Proof of Theorem 2, part II: Searching for a solution with given skeleton

Suppose that (G, p, q, k) is a Yes-instance to Distance-k-to-(pK1 + qK2) Square Root and
let H be a square root of G that is a solution to this instance with a modulator S. We say that
F is the skeleton of H with respect to S if F is obtained from H be the exhaustive application
of the following rules:

(i) if H has two distinct type 3 S-matching edges xy and x′y′ with NH(x) ∩ S = NH(x′) ∩ S
and NH(y) ∩ S = NH(y′) ∩ S, then delete x and y,

(ii) if H has two distinct S-isolated vertices x and y with NH(x) = NH(y), then delete x.

In other words, we replace the set of S-matching edges of type 3 with the same neighborhoods
on the end-vertices in S by a single representative and we replace the set of S-isolated vertices
with the same neighborhoods by a single representative.

We say that a graph F is a potential solution skeleton with respect to a set S ⊆ V (F ) of size
k for (G, p, q, k) if the following conditions hold:
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(i) F − S has maximum degree one, that is, F − S is isomorphic to sK1 + tK2 for some
nonnegative integers s and t,

(ii) for every two distinct S-isolated vertices x and y of F , NF (x) ̸= NF (y),
(iii) for every two distinct S-matching edges xy and x′y′ of type 3, eitherNF (x)∩S ̸= NH(x′)∩S

or NF (y) ∩ S ̸= NH(y′) ∩ S,
(iv) for every A,B ⊆ S such that A ∩ B = ∅ and at least one of A and B is nonempty,

{xy ∈ E(F − S) | NF (x) ∩ S = A and NF (y) ∩ S = B} has size at most 2k + 22k + 1.

Note that (iv) means that the number of type 1 and type 2 S-matched edges with the same
neighbors in S is upper bounded by 2k + 22k + 1. Since Rules 2.1 and 2.2 cannot be applied to
(G, p, q, k), we obtain the following claim by Lemmas 2(ii) and 3(ii).

Claim 2.5. Every skeleton of a solution to (G, p, q, k) is a potential solution skeleton for this
instance with respect to the modulator S.

We observe that each potential solution skeleton has bounded size.

Claim 2.6. For every potential solution skeleton F for (G, p, q, k),

|V (F )| ≤ k + 2k + 2 · 22k + 2 · 22k(2k + 22k + 1).

Proof: By the definition, F has k vertices in S, at most 2k S-isolated vertices and at most 2 · 22k

end-vertices of S-matching edges of type 3. For each A,B ⊆ S such that A∩B = ∅ and at least
one of A and B is nonempty, F has at most k+ 22k + 1 S-matching edges xy of type 1 or type 2
with NF (x)∩S = A and NF (y)∩S = B. Then we have at most 2 ·22k(2k+22k +1) end-vertices
of these edges. ⌟

Moreover, we can construct the family F of all potential solution skeletons together with
their modulators.

Claim 2.7. The family F of all pairs (F, S), where F is a potential solution skeleton and
S ⊆ V (F ) is a modulator of size k, has size at most 2(k

2) + 22k + 222k + (2k + 22k + 2)22k and
can be constructed in time 22O(k).

Proof: There are at most 2(k
2) distinct subgraph with the set of vertices S of size k. We have

at most 22k distinct sets of S-isolated vertices and there are at most 222k distinct sets of S-
matching edges of type 3. For each A,B ⊆ S such that A ∩ B = ∅ and at least one of A and
B is nonempty, there are k + 22k + 2 possible sets of S-matching edges xy of type 1 or type 2
such that NF (x) ∩ S = A and NF (y) ∩ S = B. Therefore, we have at most (2k + 22k + 2)22k

distinct sets of type 1 or type 2. Then |F| ≤ 2(k
2) + 22k + 222k + (2k + 22k + 2)22k . Finally, it is

straightforward to see that F can be constructed in 22O(k) time. ⌟

Using Claim 2.7, we construct F , and for every (F, S) ∈ F , we check whether there is
a solution H to (G, p, q, k) with a modulator S′, whose skeleton is isomorphic to F with an
isomorphism that maps S to S′. If we find such a solution, then (G, p, q, k) is a Yes-instance.
Otherwise, Claims 2.5 guarantees that (G, p, q, k) is a No-instance.

Assume that we are given (F, S) ∈ F for the instance (G, p, q, k).
Recall that we have the partition T = {T1, . . . , Tr} of V (G) into true twin classes of size at

most 2(2k + 22k)(2k + 22k + 1) + k + 2k + 2 · 22k by Rule 2.3. Recall also that the prime-twin
graph G of G is the graph with the vertex set T such that two distinct vertices Ti and Tj of G
are adjacent if and only if uv ∈ E(G) for u ∈ Ti and v ∈ Tj . Clearly, given G and T , G can be
constructed in linear time. For an induced subgraph R of G, we define τR : V (R) → T to be a
mapping such that τR(v) = Ti if v ∈ Ti for Ti ∈ T .

Let φ : V (F ) → T be a surjective mapping. We say that φ is G-compatible if every two
distinct vertices u and v of F are adjacent in F 2 if and only if φ(u) and φ(v) are adjacent in G.
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Claim 2.8. Let F be the skeleton of a solution H to (G, p, q, k). Then τF : V (F ) → T is a
G-compatible surjection.

Proof: Recall that H2 = G and F is an induced subgraph of H. Then the definition of F and
Lemma 4 (iii) immediately imply that τF is a G-compatible surjection. ⌟

Our next step is to reduce our problem to solving a system of linear integer inequalities.
Let φ : V (F ) → T be a G-compatible surjective mapping. Let X1, X2 and X3 be the sets of
end-vertices of the S-matching edges of type 1, type 2 and type 3 respectively in F . Let also
Y be the set of S-isolated vertices of F . For every vertex v ∈ V (F ), we introduce an integer
variable xv. Informally, xv is the number of vertices of a potential solution H that correspond
to a vertex v in the solution skeleton (recall that a single representative was kept in a skeleton
for any set of S-matching edges of type 3 with the same neighborhood in S; the same holds for
a set of S-isolated vertices with the same neighborhood in S).

xv = 1 for v ∈ S ∪X1 ∪X2,

xv ≥ 1 for v ∈ Y ∪X3,

xu − xv = 0 for every type 3 edge uv,∑
v∈Y xv = p,∑
v∈X1∪X2∪X3 xv = 2q,∑
v∈φ−1(Ti) xv = |Ti| for Ti ∈ T .

(1)

Note that the total number of variables is |V (F )|, which by Claim 2.6, is bounded by 2O(k).
The following claim is crucial for our algorithm.

Claim 2.9. The instance (G, p, q, k) has a solution H with a modulator S′ such that there is an
isomorphism ψ : V (F ) → V (F ′) for the skeleton F ′ of H mapping S to S′ if and only if there is
a G-compatible surjective mapping φ : V (F ) → T such that the system (1) has a solution.

Proof: Suppose that there is a solution H to (G, p, q, k) with a modulator S′, whose skeleton
F ′ is isomorphic to F with an isomorphism that maps S to S′. To simplify the notation, we
identify F and F ′ and identify S and S′. We set φ = τF . By Claim 2.8, φ is a G-compatible
surjection. For v ∈ Y , we define the value of

xv = |{u ∈ V (H) | u is an S-isolated and NH(u) = NH(v)}|.

For each S-matching edge uv of type 3 of F ,

xu = xv = |{xy ∈ E(H) |xy is an S-matching edge,
NH(x) ∩ S = NH(u) ∩ S and NH(y) ∩ S = NH(v) ∩ S}|.

This defines the value of the variables xv for v ∈ X3. Recall that for all v /∈ Y ∪ X3, xv = 1
by the definition of (1). It is straightforward to verify that the constructed assignment of the
variables gives a solution of (1) for φ.

For the opposite direction, let φ : V (F ) → T be a G-compatible surjective mapping such
that the system (1) has a solution. Assume that the variables xv have values that satisfy (1).
We construct the graph F̂ from F and the extension φ̂ of φ as follows.

· For every S-isolated vertex v of F , replace v by xv copies that are adjacent to the same
vertices as v and define φ̂(x) = φ(v) for the constructed vertices.

· For every S-matching edge uv of type 3, replace u and v by xu = xv copies of pairs of
adjacent vertices x and y, make x and y adjacent to the same vertices of S as u and v
respectively, and define φ̂(x) = φ(u) and φ̂(y) = φ(v) respectively.
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· Set φ̂(v) = φ(v) for the remaining vertices.

Observe that by the construction and the assumption that the values of the variables xv satisfy
(1), F̂ has p S-isolated vertices, q S-matching edges, and for every Ti ∈ T , |{v ∈ V (F̂ ) |
v ∈ φ̂−1(Ti)}| = |Ti|. We define ψ : V (G) → V (G) by mapping |Ti| vertices of {v ∈ V (F̂ ) |
v ∈ φ̂−1(Ti)} arbitrarily into distinct vertices of Ti ⊆ V (G) for each Ti ∈ T . Clearly, ψ is a
bijection. Notice that by Lemma 4 (iii) and Observation 2, the sets of vertices of F̂ constructed
from S-isolated vertices and the end-vertices of S-matching edges are sets of true twins in F̂ 2.
Also we have that, because φ is G-compatible, two distinct vertices u, v ∈ V (F̂ ) are adjacent in
F̂ 2 if and only if either φ̂(u) = φ̂(v) or φ̂(u) ̸= φ̂(v) and φ̂(u)φ̂(v) ∈ E(G). This implies that ψ
is an isomorphism of F̂ 2 and G, which means that G has a square root isomorphic to F̂ . Clearly,
ψ|V (F ) is an isomorphism of F into the skeleton of H mapping S to S′. ⌟

By Claim 2.9, we can state our task as follows: verify whether there is a G-compatible
surjection φ : V (F ) → T such that (1) has a solution.

For this, we consider all at most |V (F )||T | = 22O(k) surjections φ : V (F ) → T . For each
φ, we verify whether it is G-compatible. Clearly, it can be done in time O(|V (F )|3). If φ is
G-compatible, we construct the system (1) with |V (F )| = 2O(k) variables in time O(|V (F )|2).
Then we solve it by applying Theorem 1 in 22O(k) logn time. This completes the description of
the algorithm and its correctness proof.

3.2.4 Running time analysis

To evaluate the total running time, notice that the preprocessing step described in Subsec-
tion 3.2.2, that is, the exhaustive application of Rules 2.1 and 2.2 is done in polynomial time.
In particular, constructing sets A and B can be done on O(m2n) time. Then Rules 2.1 and 2.2
can be applied in O(m) time. Then the construction of T , G is and the application of Rule 2.3
is done in linear time. By Claim 2.7, the family F , described in Subsection 3.2.3, is constructed
in time 22O(k) . The final steps, that is, constructing φ and systems (1) and solving the systems,
can be done in time 22O(k) logn. Therefore, the total running time is 22O(k) · n5.

It remains to show that, given G and k, we can solve the problem for all pairs of nonnegative
integers p and q such that p+ 2q = n− k in 22O(k) · n5 time. Notice that the polynomial factor
in the running time is dominated by the time needed to construct A and B. If we wish to solve
the problem for different values of p and q, we can construct these sets just once. Furthermore,
we can construct T once as well. This implies that we can solve the problem for a family of
instances that differ only by the values of p and q in 22O(k) · n5 time.

4 A lower bound for Distance-k-to-(pK1 + qK2) Square Root
In this section, we show that the running time of our algorithm for Distance-k-to-(pK1 +qK2)
Square Root given in Section 3 (see Theorem 2) cannot be significantly improved. In fact, we
show that the Distance-k-to-(pK1+qK2) Square Root problem admits a double-exponential
lower bound, even for the special case q = 0, that is, in the case of VC-k Root.

To provide a lower bound for the VC-k Root problem, we will give a parameterized reduc-
tion from the Biclique Cover problem. This problem takes as input a bipartite graph G and
a nonnegative integer k, and the task is to decide whether the edges of G can be covered by
at most k complete bipartite subgraphs. Chandran et al. [2] showed the following two results
about the Biclique Cover problem that will be of interest to us.

Theorem 3 ([2]). Biclique Cover cannot be solved in time 22o(k) · nO(1) unless ETH is false.

Theorem 4 ([2]). Biclique Cover does not admit a kernel of size 2o(k) unless P = NP.
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Lemma 6. There exists a polynomial time algorithm that, given an instance (B, k) for Biclique
Cover, produces an equivalent instance (G, k+4) for VC-k Root, with |V (G)| = |V (B)|+k+6.

Proof. Let (B, k) be an instance of Biclique Cover where (X,Y ) is the bipartition of V (B).
Let X = {x1, . . . , xp} and Y = {y1, . . . , yq}. We construct the instance (G, k + 4) for VC-
k Root such that V (G) = X ∪ Y ∪ {z1, . . . , zk} ∪ {u, v, w, u′, v′, w′}. Denote by Z the set
{z1, . . . , zk}. The edge set of G is defined in the following way: G[X ∪ Z ∪ {u}], G[X ∪ {v}],
{u, v, w}, G[Y ∪ Z ∪ {u′}], G[Y ∪ {v′}] and {u′, v′, w′} are cliques and xiyj ∈ E(G) if and only
if xiyj ∈ E(B). The construction of G is shown in Figure 2.

X

Y

w v u u′ v′ w′

z1 z2

Figure 2: Illustrating the graphs G and H considered in the proof of Lemma 6. The sets X and
Y form the bipartition of an instance of Biclique Cover and the two colored completed bipartite
subgraphs correspond to a solution of the problem, where k = 2. The constructed graph G of VC-k
Root is depicted by the solid and dotted black edges, whereas the graph spanned by the solid black
edges corresponds to the square root H of G.

For the forward direction, suppose (B, k) is a Yes-instance for Biclique Cover. We will
show that (G, k + 4) is a Yes-instance for VC-k Root. Note that if B has a biclique cover
of size strictly less than k, we can add arbitrary bicliques to this cover and obtain a biclique
cover for B of size exactly k. Let C = {C1, . . . , Ck} be such a biclique cover. We construct the
following square root candidate H for G with V (H) = V (G). Add the edges uv, vw, u′v′ and
v′w′ to H, and also all the edges between u and X, all the edges between u′ and Y and all the
edges in G[Z]. Finally, for each 1 ≤ i ≤ k, add to H all the edges between zi and the vertices
of Ci.

Claim 4.1. The constructed graph H is indeed a square root of G.

Proof: We show that xy ∈ E(G) if and only if dH(x, y) ≤ 2. For the forward direction, let
xy ∈ E(G) be such that xy /∈ E(H). If xy = uw, note that uv, vw ∈ E(H). If xy = vxi for some
i, note that uv, uxi ∈ E(G). If xy = xixj , then uxi, uxj ∈ E(H). If xy = uzi, let xj be a vertex
of Ci and note that uxj , xjzi ∈ E(H). If xy = xjzi, let ℓ be such that xj ∈ Cℓ and observe that
xjzℓ, zℓzi ∈ E(H). Symmetric arguments apply for the edges in G[Y ∪Z∪{u′, v′, w′}]. Finally, if
xy = xiyj , let Cℓ be the biclique containing the edge xiyj in C and note that xizℓ, yjzℓ ∈ E(H).
For the other direction, note that, by construction, if xy ∈ E(H), then xy ∈ E(G). It is easy to
check that if dH(x, y) = 2, then xy ∈ E(G) (see the dotted edges in Figure 2). ⌟

We conclude that (G, k + 4) is a Yes-instance for VC-k Root by Claim 4.1 together with
the fact that Z ∪ {u, v, u′, v′} is a vertex cover of H of size k + 4.

Before we show the reverse direction of the theorem, we state the next three claims, that
concern the structure of any square root of the graph G.

Claim 4.2. The edges uv, vw, u′v′ and v′w′ belong to any square root of G.
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Proof: Suppose for a contradiction that the graph G has a square root H such that vw /∈ E(H).
In this case, it holds that vu, uw ∈ E(H), since u is the only common neighbor of v and w.
However, since wxi /∈ E(G) for every 1 ≤ i ≤ p and wzj /∈ E(G) for every 1 ≤ j ≤ k, then
uxi, uzj /∈ E(H). Therefore, there must exist an induced P3 in H with endpoints, for instance,
u and zℓ, for some ℓ. However, since uxi, uzj /∈ E(H) for every 1 ≤ i ≤ p and every 1 ≤ j ≤ k
and NG(u) = X ∪ Z ∪ {v, w}, either v or w have to be the middle vertex of the P3. This is a
contradiction, since vzℓ, wzℓ /∈ E(G).

Now suppose for a contradiction that the graph G has a square root H such that uv /∈ E(H).
If there exists ℓ such that uxℓ, vxℓ ∈ E(H), then we have a contradiction, since this would imply
that no edge incident to w can be in H, given that wxℓ /∈ E(G). We can then conclude that
vw, uw ∈ E(H). We can now reach a contradiction by the same argument as used in the previous
paragraph.

The claim follows by a symmetric argument for the edges u′v′ and v′w′. ⌟

Claim 4.3. The edges {uxi, u
′yj | 1 ≤ i ≤ p, 1 ≤ j ≤ q} belong to any square root of G.

Proof: Suppose for a contradiction that G has a square root H such that uxi /∈ E(H) for some
1 ≤ i ≤ p. By Claim 4.2, uv, vw ∈ E(H). This implies that vxi /∈ E(H), since wxi /∈ E(G).
Since uxi /∈ E(H) by assumption, there must exist j such that xj is the middle vertex of a P3
in H with endpoints v and xi. However, this is a contradiction, since wxj /∈ E(G). The claim
follows by a symmetric argument for the edges of the form u′yj . ⌟

Claim 4.4. The edges {xiyj | 1 ≤ i ≤ p, 1 ≤ j ≤ q} do not belong to any square root of G.

Proof: Suppose for a contradiction that G has a square root H such that xiyj ∈ E(H) for some
1 ≤ i ≤ p and 1 ≤ j ≤ q. By Claim 4.3, we have that uxi ∈ E(H), which is a contradiction
since uyj /∈ E(G). ⌟

Now, for the reverse direction of the theorem, assume that G has a square root H that has
a vertex cover of size at most k + 4. By Claim 4.4, for every edge of G of the form xiyj , it
holds that xiyj /∈ E(H). This implies that, for every such edge, there exists an induced P3 in
H having xi and yj as its endpoints. Since NG(xi) ∩NG(yj) = Z, only vertices of Z can be the
middle vertices of these paths. For 1 ≤ ℓ ≤ k, let Cℓ = NH(zℓ) ∩ (X ∪ Y ). We will now show
that C = {C1, . . . , Ck} is a biclique cover of B. First, note that since for every edge xiyj , there
exists zh ∈ Z such that zhxi, zhyj ∈ E(H), we conclude that xiyj ∈ Ch, which implies that C
is an edge cover of B. Furthermore, for a given ℓ, since every vertex of Cℓ is adjacent to zℓ in
H, G[Cℓ] is a clique and, therefore, B[Cℓ] is a biclique. This implies that C is indeed a biclique
cover of B of size k, which concludes the proof of the theorem.

From Theorem 3 and Lemma 6 we obtain the following theorems.

Theorem 5. VC-k Root cannot be solved in time 22o(k) · nO(1) unless ETH is false.

Moreover, from Theorem 4 and Lemma 6 we can also conclude the following corollary.

Theorem 6. VC-k Root does not admit a kernel of size 2o(k) unless P = NP.

Proof. Assume that VC-k Root has a kernel of size 2o(k). Since VC-k Root is in NP and
Biclique Cover is NP-complete, there is an algorithm A that in time O(nc) reduces VC-k
Root to Biclique Cover, where c is a positive constant. Then combining the reduction from
Lemma 6, the kernelization algorithm for VC-k Root and A, we obtain a kernel for Biclique
Cover of size (2o(k))c that is subexponential in k. By Theorem 4, this is impossible unless
P = NP. Equivalently, we can observe that Chandran et al. [2], in fact, proved a stronger claim.
Their proof shows that Biclique Cover does not admit a compression (we refer to [5] for the
definition of the notion) of subexponential in k size to any problem in NP.
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5 Distance-k-to-Clique Square Root
In this section, we consider the complexity of testing whether a graph admits a square root of
bounded deletion distance to a clique. More formally, we consider the following problem:

Input: A graph G and nonnegative integer k.
Task: Decide whether there is a square root H of G such that H−S is a complete

graph for a set S on k vertices.

Distance-k-to-Clique Square Root

We give an algorithm running in FPT-time parameterized by k, the size of the deletion set.
That is, we prove the following theorem.

Theorem 7. Distance-k-to-Clique Square Root can be solved in time 22O(k) · (n+m).

Proof. Let (G, k) be an instance to Distance-k-to-Clique Square Root. We start by com-
puting the number of classes of true twins in G. Recall that this can be done in linear time [29].
If G has at least 2k + k+ 1 classes of true twins, then G is a No-instance to the problem, as we
show in the following claim.

Claim 7.1. Let G be a graph and H be a square root of G such that H −S is a complete graph,
with |S| = k. Let T1, . . . , Tt be a partition of V (G) into classes of true twins. Then t ≤ 2k + k.

Proof: Let C = V (H) \ S. Note that if u, v ∈ C and NH(u) ∩ S = NH(v) ∩ S, then u and v
are true twins in G. Thus, we have at most 2k distinct classes of true twins among the vertices
of C, and at most k among the vertices of S. ⌟

Hence, from now on we assume that G has at most 2k + k classes of true twins. We ex-
haustively apply the following rule in order to decrease the size of each class of true twins in
G.

Rule 7.1. If |Ti| ≥ 2k + k + 1 for some i, delete a vertex from Ti.

The following claim shows that Rule 7.1 is safe.

Claim 7.2. If G′ is the graph obtained from G by the application of Rule 7.1, then (G, k) and
(G′, k) are equivalent instances of Distance-k-to-Clique Square Root.

Proof: Let G′ = G − v. First assume (G, k) is a Yes-instance to Distance-k-to-Clique
Square Root and let H be a square root of G that is a solution to this problem. Since
|Ti| ≥ 2k +k+1 and G has at most 2k +k classes of true twins, by the pigeonhole principle there
are two vertices x, y ∈ Ti such that, in H, x, y /∈ S and NH [x] ∩ S = NH [y] ∩ S. That is, x and
y are true twins in H also. Thus, H ′ = H − x is a square root for G′′ = G− x such that H ′ − S
is a complete graph. Since G′ and G′′ are isomorphic, we have that (G′, k) is a Yes-instance as
well.

Now assume (G′, k) is a yes-instance to Distance-k-to-Clique Square Root and let H ′

be a square root of G′ that is a solution to the problem. Note that Ti \ {v} is a true twin class
of G′ of size at least 2k + k. Thus, there exists u ∈ Ti \ {v} such that, in H ′, u /∈ S. We can
add v to H ′ as a true twin of u and obtain a square root H for G such that H −S is a complete
graph. ⌟

After exhaustive application of Rule 7.1, we obtain an instance (G′, p′, k) such that G′ con-
tains at most (2k + k)2 vertices, since it has at most 2k + k twin classes, each of size at most
2k+k. Moreover, (G′, k) and (G, k) are equivalent instances of Distance-k-to-Clique Square
Root. We can now check by brute force whether (G′, k) is Yes-instance to the problem. Since
G′ has 2O(k) vertices, this can be done in time 22O(k) . We obtain that the total running time is
22O(k) · (n+m), which concludes the proof of the theorem.
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6 Conclusion
In this work, we showed that Distance-k-to-(pK1 + qK2) Square Root and its variants can
be solved in 22O(k) · nO(1) time. We also proved that the double-exponential dependence on k
is unavoidable up to Exponential Time Hypothesis, that is, the problem cannot be solved in
22o(k) · nO(1) time unless ETH fails. We also proved that the problem does not admit a kernel
of subexponential in k size unless P = NP. We believe that it would be interesting to further
investigate the parameterized complexity of H-Square Root for sparse graph classes H under
structural parameterizations. The natural candidates are the Distance-k-to-Linear-Forest
Square Root and Feedback-Vertex Set-k Square Root problems, whose tasks are to
decide whether the input graph has a square root that can be made a linear forest, that is,
a union of paths, and a forest respectively by (at most) k vertex deletions. Recall that the
existence of an FPT algorithm for H-Square Root does not imply the same for subclasses of
H. However, it can be noted that the reduction from Lemma 6 implies that our complexity
lower bounds still hold and, therefore, we cannot expect that these problems would be easier.

Parameterized complexity of H-Square Root is widely open for other, not necessarily
sparse, graph classes. We considered the Distance-k-to-Clique Square Root problem and
proved that it is FPT when parameterized by k. What can be said if we ask for a square root
that is at deletion distance (at most) k form a cluster graph, that is, the disjoint union of cliques?
We believe that our techniques allows to show that this problem is FPT when parameterized by
k if the number of cliques is a fixed constant. Is the problem FPT without this constraint?
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